Talk:Quinone

From Wikipedia, the free encyclopedia
Jump to: navigation, search
WikiProject Chemistry (Rated Start-class, Mid-importance)
WikiProject icon This article is within the scope of WikiProject Chemistry, a collaborative effort to improve the coverage of chemistry on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Start-Class article Start  This article has been rated as Start-Class on the project's quality scale.
 Mid  This article has been rated as Mid-importance on the project's importance scale.
 

Non-aromaticity[edit]

I think quinones are aromatic. But in the article it is said that they are not aromatic. Can anyone explain?

Read aromaticity. The double bonds of quinone are localized. Icek 00:07, 29 March 2007 (UTC)

Huckles rule is a simple check for aromaticity, and drawing electron movement arrows helps as well -MKausch —Preceding unsigned comment added by 76.180.153.183 (talk) 05:37, 11 June 2008 (UTC)

Electron delocalization is not possible on the carbonyl carbons User:CountZepplin Sept 2008 —Preceding undated comment was added at 09:59, 11 September 2008 (UTC).

Electron delocaization is very much possible on carbonyl carbons. We can draw the pi molecuialr orbital structure of 1,4-benzoquinone, and identify four clearly bonding orbitals which, taken together, give significant (net) pi bonding along all the linkages of the molecule. It looks like it has aromatic character (though not "fully" aromatic) to me. Olthe3rd1 (talk) 19:14, 19 January 2014 (UTC)olthe3rd1

This page needs to be wikified slightly[edit]

This page could use a little help, especially considering the fact that introduction section is somewhat dense.RSido 21:13, 25 February 2007 (UTC)


Meta-quinone?[edit]

Shouldn't there be a meta-quinone with the formula C1(=O)CC(=O)C=C=C1 ? (but it would be quite unstable) Icek 00:07, 29 March 2007 (UTC)

It doesn't work. Try drawing a structure which (like the ortho and para isomers) has four pi bonds and all atoms with an octet. You can't. There are not enough electrons to go around, even though it seems to be enough in the ortho and para isomers. What happens in MO theory is this: In the ortho and para isomers you have four bonding and four antibonding pi orbitals. But in the meta isomer there are three bonding, three antibonding and two essentially nonbonding pi orbitals. The latter have high electron density on the oxygens and so, to get a stable configuration, you need to occupy both. That requires two extra electrons so you get a dianion (which may be protonated to resorcinol). Olthe3rd1 (talk) 19:21, 19 January 2014 (UTC)olthe3rd1

They ARE Aromatic[edit]

Quinone are actually well-known for BEING AROMATIC. The double bonds are actually NOT localized. If you look at the Carbonyl carbons, you will realize that these carbons are SP2 hybridized AND each contain one pi electron in their p orbitals. (This electron contributes to the C=O bond.) If you count these two electrons + the 4 in the two double bonds, Quinone had 6 pi electrons, which IS a Huckel number! Hence...aromatic. —Preceding unsigned comment added by 98.217.65.10 (talk) 05:59, 10 February 2009 (UTC)

I replaced the intro, which was rather rough and possibly wrong, with the official IUPAC definition. IUPAC nicely sidesteps this issue of aromaticity, which probably needs a more thorough analysis using MO theory. Walkerma (talk) 16:15, 12 February 2009 (UTC)