Talk:Thorium

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Good article Thorium has been listed as one of the Natural sciences good articles under the good article criteria. If you can improve it further, please do so. If it no longer meets these criteria, you can reassess it.
Good topic star Thorium is part of the Actinides series, a good topic. This is identified as among the best series of articles produced by the Wikipedia community. If you can update or improve it, please do so.
Article milestones
Date Process Result
September 7, 2014 Good article nominee Listed
September 29, 2014 Good topic candidate Promoted
Did You Know
Current status: Good article
Version 0.5
Peer review This Natsci article has been selected for Version 0.5 and subsequent release versions of Wikipedia.
WikiProject Elements (Rated GA-class, High-importance)
WikiProject icon This article is supported by WikiProject Elements, which gives a central approach to the chemical elements and their isotopes on Wikipedia. Please participate by editing this article, or visit the project page for more details.
 GA  This article has been rated as GA-Class on the quality scale.
 High  This article has been rated as High-importance on the importance scale.
 

References[edit]

Thorium Space Ship Ausgestellt Hannover Messe Jahr 2015[edit]

Wer investiert in die Space Materialforschung bis zum Jahr 2020 50 Milliarden Dollar? Im Kern geht es darum Materialien zu entwickeln, auf der Erde, auf dem Mond, auf dem Mars, im Sonnensystem, welche geeignet sind im Sonnensystem zu existieren bei den dortigen realen wissenschaftlichen Bedingungen (Vakuum, Temperaturen um den absoluten Nullpunkt, Elektromagnetische Strahlung der Sonne und Sonnenwinde). Wie ist der derzeitige F&E-Stand der Wissenschaft und der Industrie/Handwerk (Hannover Messe 2015, April)? Haben die besten deutschen 1000 Unternehmen in diesen Bereich schon investiert und wie ist der Stand der produzierten Produkte? Auf der Hannover Messe April 2015 stellen die besten Deutschen Unternehmen jeweil ein von ihnen entwickeltes und produziertes Produkt vor. Zum Beispiel muss es Industrielacke (Airbus 380) geben die Temperaturen von minus 270 Grad Celsius enthalten und im Inneren eines Thorium Space Ship (Technischer praktischer Konstruktionsplan?) muss es Materialien geben die Temperaturen widerstehen bis zu 1 Million Grad Celsius Plus. Welche Materialien produzieren die Weltraumorganisationen NASA ESA und Russland, Indien, Japan, China? Statoil Airport Bergen Norway 143.97.213.134 (talk) 06:53, 30 January 2015 (UTC)

Tig Electrodes[edit]

I was surprised to see that the section on applications doesn't list thoriated tungsten TIG welding electrodes. I am not a welder so I think it would be best if someone who knows more about this could add information about this application. --Sbreheny (talk) 16:40, 25 March 2015 (UTC)

Hmm. It's in the lede ("Thorium is also used as an alloying element in nonconsumable TIG welding electrodes."), but strangely not in the applications section. I'll go check where I found this, and try to cobble together something soon. Double sharp (talk) 14:28, 28 March 2015 (UTC)
Hmm, was added in a big edit by Double sharp last summer.--Stone (talk) 15:56, 29 March 2015 (UTC)
Oh dear, that summer? The summer when my computer started selecting random things and deleting them accidentally? (I managed to break the table at list of nuclides accidentally like that! I fixed the page and got that computer problem fixed once I noticed, of course.) If so, this is definitely my fault: thanks to Stone for replacing it. Double sharp (talk) 15:59, 29 March 2015 (UTC)
No problem. Your edit was a good improvment. --Stone (talk) 16:08, 29 March 2015 (UTC)

Occurrence[edit]

This section contains the clause "thorium-232 is several hundred times more abundant than uranium-235", which is of dubious relevance, and may be misleading. Uranium-238 is about a hundred and forty times more abundant than uranium-235, but the latter has a property that is not found in U-238 nor Th-232. It is thermally fissile. Th-232 can be transmuted into fissile U-233, by a process that may be simpler or safer than fast neutron irradiation of U-238, but the source of the neutrons for startup is likely to be either U-235 or Pu-239. DaveyHume (talk) 17:53, 12 May 2015 (UTC)