Talk:Work hardening

From Wikipedia, the free encyclopedia
Jump to: navigation, search
WikiProject Metalworking (Rated C-class, Top-importance)
WikiProject icon This article is within the scope of WikiProject Metalworking, a collaborative effort to improve the coverage of Metalworking on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
C-Class article C  This article has been rated as C-Class on the project's quality scale.
 Top  This article has been rated as Top-importance on the project's importance scale.
 

Merge cold work into work hardening[edit]

The following discussion is closed. Please do not modify it. Subsequent comments should be made in a new section.

I've started working on the merger in my sandbox. The link to edit the sandbox is at the top of my user page Xpanzion 07:12, 15 December 2006 (UTC)

The cold work and work hardening definitely talk about exactly the same thing and are complementary. They should be merged under a single article title with redirects in place. I prefer to merge under the title of work hardening because that is the most common descriptive name that I am used to reading and hearing for this topic. The term cold worked is usually only used as an adjective describing a piece of metal, but when talking about why cold rolled metal is stronger than hot rolled, people usually shift to talking about "work hardening" as the general process.--Yannick 03:34, 13 August 2006 (UTC)

Talk:strain hardening mentions an old plan to move cold work to strain hardening, but this was apparently never done. I never see or hear the term "strain hardening" except in material sciences textbooks.--Yannick 03:34, 13 August 2006 (UTC)


The above discussion is preserved as an archive. Please do not modify it. Subsequent comments should be made in a new section.


drilling and work hardening[edit]

Someone might want to add information about work hardening and drilling. When drills fail to penetrate some steel alloys, the heat buildup can toughen the material and make it harder to drill even more.

Not the same thing at all. Work Hardening is due to plastic deformation. What this note is describing is a purely thermal process and is not in any way shape or form cold work or work hardening. What usually happens is the drill bit itself loses it's heat treatment and the hard alloy steel wears away the sharpened edge of the drill bit. This rapidly becomes a feedback loop - the dull bit causes more frictional heating causing more dulling, and a broken bit follows in rapid order. —Preceding unsigned comment added by 66.117.135.63 (talk) 04:16, 15 March 2009 (UTC)
Actually, I think you are both right, depending on the case. Unintentional work hardening does sometimes occur in machining, with annoying results. — ¾-10 02:41, 22 January 2010 (UTC)

Removal of red links[edit]

I have considered to remove the redlinks without altering the content i will just remove the internal link format to make the page look a bit neat and informative. Any comments regarding this are welcome. Kalivd (talk) 15:21, 21 July 2008 (UTC)

I went through and linked some of the red links. The ones that are left I think can just be removed. Wizard191 (talk) 15:41, 21 July 2008 (UTC)

Proposed merge from cold forming[edit]

The following discussion is closed. Please do not modify it. Subsequent comments should be made in a new section. A summary of the conclusions reached follows.
The result was merge. Wizard191 (talk) 22:44, 17 October 2009 (UTC)

Cold forming is just an application of cold working. This article already references to cold working. Why make people look in two locations for one concept? --Wizard191 (talk) 01:39, 23 October 2008 (UTC)

I agree with this merger; the two topics are not identical but should be able to be covered well in a single article. We should consider, however, preserving the list of processes in the cold work article and perhaps even create a new list article from it. Jminthorne (talk) 06:46, 3 September 2009 (UTC)

The above discussion is preserved as an archive. Please do not modify it. Subsequent comments should be made in a new section.


Lede too jargonistic?[edit]

I noticed that the lede here seems to be ripped from a third or fourth year chemistry book. Perhaps we would do better to simplify the terms in the lede, and then explain in more detail in the article itself. Throwaway85 (talk) 03:42, 17 October 2009 (UTC)

You are right, the intro should be more accessible. I'll see what I can do, but it's probably a long way off. Wizard191 (talk) 22:44, 17 October 2009 (UTC)

Confusing Yield-Stress Formula[edit]

In the "Quantification of work hardening" section, a formula for yield stress, T, is given, with a square-root dependency. Then right after the formula is introduced, it says, "The material exhibits high strength if there are either high levels of dislocations (greater than 10^14 per m^2) or no dislocations."

I believe it's the paragraph that's right and the formula is wrong, because it's incomplete. The formula needs boundary conditions, because clearly when the dislocation density is zero, the yield stress is very high (I presume because the atomic bonds are maximized in the crystal lattice), but the formula predicts a minimum for yield stress.

199.106.103.248 (talk) 04:40, 6 March 2010 (UTC)

Getting the word right.[edit]

The first sentence suggests that material that is work hardened is strengthened. Uhhh, isn't the reverse true? For example, doesn't work-hardening of mild steel actually make it more brittle and somewhat weaker? —Preceding unsigned comment added by 121.218.205.13 (talk) 09:34, 13 January 2011 (UTC)

"Hardening" in this sense is actually a misnomer, because work hardening processes don't actually harden the material, they increase its strength. The sentence is right, the terminology is just somewhat misleading. Wizard191 (talk) 22:11, 13 January 2011 (UTC)
Actually, in the case of mild steel, I think the first editor may be right. You can lower the yield strength of mild steel by applying a negligible plastic strain. This is, however, an exception to a more general rule. See this image for a visual. - Koenig (talk) 18:58, 2 August 2013 (UTC)

Imaginary Dislocations[edit]

I'm not confident the section on dislocations needed to be saying explicitly that they don't exist. They exist as much as a wave on the ocean or a warm front in the atmosphere do. While you could reinterpret the situation into one where they are all simply variations in some larger medium/object, it seems a bit...obtuse. And they definitely aren't as simple as vacancies. Darryl from Mars (talk) 06:25, 18 June 2012 (UTC)

New Work Hardening Stress-Strain Diagram[edit]

There is an obvious and easily understood way to illustrate strain hardening using a stress-strain curve. The diagram on p.9 of R. Hill's "The Mathematical Theory of Plasticity" does it perfectly, and it, or it's equivalent, should be integrated into this page: Hill's Diagram - Koenig (talk) 18:59, 2 August 2013 (UTC)

Work hardening at room temperature of Indium[edit]

As this relates to my PhD project, I've done some literature review on this. Reference [3] does NOT state that Indium doesn't work harden at room temperature - it only states that it doesn't work harden at cryogenic temperatures: "The indications are that the mechanism which causes work-hardening ceases to become operative at low temperature when moderate hydrostatic pressures are present." A different paper that I've found by R. Darveaux and I. Turlik (http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=113309) demonstrates work hardening in indium at room temperature, and in the conclusion states: "It was apparent that both work hardening and recovery processes occur in indium at room temperature..." -- Highwind888, the Fuko Master 01:20, 5 December 2013 (UTC)

Feel free to change the article and cite the refs accurately. The current version talks about "low temperatures" but doesn't make clear that cryo-level is apparently what they meant by low. Maybe you can rewrite those sentences to clarify. — ¾-10 02:13, 5 December 2013 (UTC)
It also sounds like indium work hardens at room temperature, but it also anneals at room temperature. If that is the case, the original statement is not too far off. Glrx (talk) 21:07, 7 December 2013 (UTC)