Targeted therapy

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Targeted therapy or molecularly targeted therapy is one of the major modalities of medical treatment (pharmacotherapy) for cancer, others being hormonal therapy and cytotoxic chemotherapy. Targeted therapy blocks the growth of cancer cells by interfering with specific targeted molecules needed for carcinogenesis and tumor growth,[1] rather than by simply interfering with all rapidly dividing cells (e.g. with traditional chemotherapy). The term biologic therapy is sometimes synonymous with targeted therapy when used in the context of cancer therapy (and thus distinguished from chemotherapy, that is, cytotoxic therapy). However, the modalities can be combined; antibody-drug conjugates combine biologic and cytotoxic mechanisms into one targeted therapy.

Targeted cancer therapies are expected to be more effective than older forms of treatments and less harmful to normal cells. Many targeted therapies are examples of immunotherapy (using immune mechanisms for therapeutic goals) developed by the field of cancer immunology.

There are targeted therapies for breast cancer, multiple myeloma, lymphoma, prostate cancer, melanoma and other cancers.[2]

The definitive experiments that showed that targeted therapy would reverse the malignant phenotype of tumor cells involved treating Her2/neu transformed cells with monoclonal antibodies in vitro and in vivo by Mark Greene’s laboratory and reported from 1985.[3]

Some have challenged the use of the term, stating that drugs usually associated with the term are insufficiently selective.[4] The phrase occasionally appears in scare quotes: "targeted therapy".[5] Targeted therapies may also be described as "chemotherapy" or "non-cytotoxic chemotherapy", as "chemotherapy" strictly means only "treatment by chemicals". But in typical medical and general usage "chemotherapy" is now mostly used specifically for "traditional" cytotoxic chemotherapy.

Types[edit]

The main categories of targeted therapy are currently small molecules and monoclonal antibodies.

Tyrosine kinase inhibitors (small molecules)[edit]

Mechanism of imatinib

Many are tyrosine-kinase inhibitors.

Small Molecule Drug Conjugates[edit]

  • Vintafolide is a small molecule drug conjugate consisting of a small molecule targeting the folate receptor. It is currently in clinical trials for platinum-resistant ovarian cancer (PROCEED trial) and a Phase 2b study(TARGET trial) in non-small-cell lung carcinoma (NSCLC).[13]

Serine/threonine kinase inhibitors (small molecules)[edit]

Monoclonal antibodies[edit]

Several are in development and a few have been licenced by the FDA. Examples of licenced monoclonal antibodies include:

Many Antibody-drug conjugates (ADCs) are being developed. See also ADEPT (Antibody-directed enzyme prodrug therapy).

Progress and future[edit]

In the U.S., the National Cancer Institute's Molecular Targets Development Program (MTDP) aims to identify and evaluate molecular targets that may be candidates for drug development.

See also[edit]

References[edit]

  1. ^ "Definition of targeted therapy - NCI Dictionary of Cancer Terms". 
  2. ^ NCI: Targeted Therapy tutorials
  3. ^ Perantoni AO, Rice JM, Reed CD, Watatani M, Wenk ML (September 1987). "Activated neu oncogene sequences in primary tumors of the peripheral nervous system induced in rats by transplacental exposure to ethylnitrosourea". Proc. Natl. Acad. Sci. U.S.A. 84 (17): 6317–6321. doi:10.1073/pnas.84.17.6317. PMC 299062. PMID 3476947. 
    Drebin JA, Link VC, Weinberg RA, Greene MI (December 1986). "Inhibition of tumor growth by a monoclonal antibody reactive with an oncogene-encoded tumor antigen". Proc. Natl. Acad. Sci. U.S.A. 83 (23): 9129–9133. doi:10.1073/pnas.83.23.9129. PMC 387088. PMID 3466178. 
    Drebin JA, Link VC, Stern DF, Weinberg RA, Greene MI (July 1985). "Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies". Cell 41 (3): 697–706. doi:10.1016/S0092-8674(85)80050-7. PMID 2860972. 
  4. ^ Zhukov NV, Tjulandin SA (May 2008). "Targeted therapy in the treatment of solid tumors: practice contradicts theory". Biochemistry Mosc. 73 (5): 605–618. doi:10.1134/S000629790805012X. PMID 18605984. 
  5. ^ Markman M (2008). "The promise and perils of 'targeted therapy' of advanced ovarian cancer". Oncology 74 (1–2): 1–6. doi:10.1159/000138349. PMID 18536523. 
  6. ^ Katzel JA, Fanucchi MP, Li Z (January 2009). "Recent advances of novel targeted therapy in non-small cell lung cancer". J Hematol Oncol 2 (1): 2. doi:10.1186/1756-8722-2-2. PMC 2637898. PMID 19159467. 
  7. ^ Lacroix, Marc (2014). Targeted Therapies in Cancer. Hauppauge , NY: Nova Sciences Publishers. ISBN 978-1-63321-687-7. 
  8. ^ Jordan VC (January 2008). "Tamoxifen: catalyst for the change to targeted therapy". Eur. J. Cancer 44 (1): 30–38. doi:10.1016/j.ejca.2007.11.002. PMC 2566958. PMID 18068350. 
  9. ^ Warr MR, Shore GC (December 2008). "Small-molecule Bcl-2 antagonists as targeted therapy in oncology". Curr Oncol 15 (6): 256–61. PMC 2601021. PMID 19079626. 
  10. ^ Li J, Zhao X, Chen L, et al. (2010). "Safety and pharmacokinetics of novel selective vascular endothelial growth factor receptor-2 inhibitor YN968D1 in patients with advanced malignancies". BMC Cancer 10: 529. doi:10.1186/1471-2407-10-529. PMC 2984425. PMID 20923544. 
  11. ^ http://clinicaltrials.gov/ct2/results?term=apatinib
  12. ^ "Phase II study of AEZS-108 (AN-152), a targeted cytotoxic LHRH analog, in patients with LHRH receptor-positive platinum resistant ovarian cancer.". 2010. 
  13. ^ Template:Http://www.dddmag.com/news/2012/04/merck-endocyte-development-deal
  14. ^ Pollack, Andrew (2009-03-31). "F.D.A. Panel Supports Avastin to Treat Brain Tumor". New York Times. Retrieved 2009-08-13. 

External links[edit]