Taylor microscale

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The Taylor microscale is a length scale used to characterize a turbulent fluid flow.[1] The Taylor microscale is the INTERMEDIATE length scale at which fluid viscosity significantly affects the dynamics of turbulent eddies in the flow. This length scale is traditionally applied to turbulent flow which can be characterized by a Kolmogorov spectrum of velocity fluctuations. In such a flow, length scales which are larger than the Taylor microscale are not strongly affected by viscosity. These larger length scales in the flow are generally referred to as the inertial range. Below the Taylor microscale the turbulent motions are subject to strong viscous forces and kinetic energy is dissipated into heat. These shorter length scale motions are generally termed the dissipation range.

Calculation of the Taylor microscale is not entirely straightforward, requiring formation of certain flow correlation function(s),[2] then expanding in a Taylor series and using the first non-zero term to characterize an osculating parabola. The Taylor microscale is proportional to  Re^{-1/2} , while the Kolmogorov microscales is proportional to  Re^{-3/4} , where  Re is the integral scale Reynolds number. This microscale is named after Geoffrey Ingram Taylor.


  1. ^ Tennekes & Lumley (1972) pp. 65–68.
  2. ^ Landahl, M.T. & E. Mollo-Christensen. Turbulence and Random Processes in Fluid Mechanics. Cambridge, 2ed, 1992.