Ternary commutator

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematical physics, the ternary commutator is an additional ternary operation on a triple system defined by

[a,b,c] = abc-acb-bac+bca+cab-cba. \,

Also called the ternutator or alternating ternary sum, it is a special case of the n-commutator for n = 3, whereas the 2-commutator is the ordinary commutator.

Further reading[edit]