Giant impact hypothesis

From Wikipedia, the free encyclopedia
  (Redirected from Theia (planet))
Jump to: navigation, search
Artist's depiction of a collision between two planetary bodies. Such an impact between the Earth and a Mars-sized object likely formed the Moon.

The giant impact hypothesis states that the Moon was formed out of the debris left over from an indirect collision between the Earth and an astronomical body the size of Mars, approximately 4.5 Gya (four and a half billion years ago) in the Hadean eon. The colliding body is sometimes called Theia, for the mythical Greek Titan who was the mother of Selene, the goddess of the Moon.[1] An alternative name for the colliding body is Orpheus, for the legendary musician, poet, and prophet in ancient Greek religion and myth.

The giant impact hypothesis is currently the favoured scientific hypothesis for the formation of the Moon.[2] Supporting evidence includes: the Earth's spin and Moon's orbit having similar orientations,[3] Moon samples indicating the surface of the Moon was once molten, the Moon's relatively small iron core, lower density compared to the Earth, evidence of similar collisions in other star systems (that result in debris disks), and that giant collisions are consistent with the leading theories of the formation of the solar system. Finally, the stable isotope ratios of lunar and terrestrial rock are identical, implying a common origin.[4]

There remain several questions concerning the best current models of the giant impact hypothesis, however.[5] The energy of such a giant impact is predicted to heat Earth to produce a global 'ocean' of magma; yet there is no evidence of the resultant planetary differentiation of the heavier material sinking into Earth's mantle. At present, there is no self-consistent model that starts with the giant impact event and follows the evolution of the debris into a single moon. Other remaining questions include when the Moon lost its share of volatile elements and why Venus, which also experienced giant impacts during its formation, does not host a similar moon.

History[edit]

In 1898, George Darwin made the suggestion that the Earth and Moon had once been one body. Darwin's hypothesis was that a molten Moon had been spun from the Earth because of centrifugal forces, and this became the dominant academic explanation.[6] Using Newtonian mechanics, he calculated that the Moon had orbited much more closely in the past and was drifting away from the Earth. This drifting was later confirmed by American and Soviet experiments, using laser ranging targets placed on the Moon.

Nonetheless, Darwin's calculations could not resolve the mechanics required to trace the Moon backward to the surface of the Earth. In 1946, Reginald Aldworth Daly of Harvard University challenged Darwin's explanation, adjusting it to postulate that the creation of the Moon was caused by an impact rather than centrifugal forces.[7] Little attention was paid to Professor Daly's challenge until a conference on satellites in 1974, during which the idea was reintroduced and later published and discussed in Icarus in 1975 by Drs. William K. Hartmann and Donald R. Davis. Their models suggested that, at the end of the planet formation period, several satellite-sized bodies had formed that could collide with the planets or be captured. They proposed that one of these objects may have collided with the Earth, ejecting refractory, volatile-poor dust that could coalesce to form the Moon. This collision could potentially explain the unique geological and geochemical properties of the Moon.[8]

A similar approach was taken by Canadian astronomer Alastair G. W. Cameron and American astronomer William R. Ward, who suggested that the Moon was formed by the tangential impact upon Earth of a body the size of Mars. It is hypothesized that most of the outer silicates of the colliding body would be vaporized, whereas a metallic core would not. Hence, most of the collisional material sent into orbit would consist of silicates, leaving the coalescing Moon deficient in iron. The more volatile materials that were emitted during the collision probably would escape the Solar System, whereas silicates would tend to coalesce.[9]

Theia[edit]

The name of the hypothesized protoplanet is derived from the mythical Greek titan Theia /ˈθə/, who gave birth to the Moon goddess Selene. This designation was proposed initially by the English geochemist Alex N. Halliday in 2000 and has become accepted in the scientific community.[1][10] According to modern theories of planet formation, Theia was part of a population of Mars-sized bodies that existed in the Solar System 4.5 billion years ago. Indeed, one of the attractive features of the giant impact hypothesis is that the formation of the Moon fits into the context of the formation of the Earth: during the course of its formation, the Earth is thought to have experienced dozens of collisions with such planet-sized bodies. The Moon-forming collision would have been only one such "giant impact" and, perhaps, the last.

Basic model[edit]

Astronomers think the collision between Earth and Theia happened at approximately 4.4 and 4.45[11] bya; about 30–50 million years after the Solar System began to form. In astronomical terms, the impact would have been of moderate velocity. Theia is thought to have struck the Earth at an oblique angle when the latter was nearly fully formed. Computer simulations of this "late-impact" scenario suggest an impact angle of about 45° and an initial impactor velocity below 4 km/s.[12] Theia's iron core would have sunk into the young Earth's core, and most of Theia's mantle accreted onto the Earth's mantle, however, a significant portion of the mantle material from both Theia and the Earth would have been ejected into orbit around the Earth (if ejected with velocities between orbital velocity and escape velocity) or into individual orbits around the sun (if ejected at higher velocities). The material in orbits around the earth quickly coalesced into the Moon (possibly within less than a month, but in no more than a century). The material in orbits around the sun stayed on their Kepler orbits, which are stable in space, and was thus likely to hit the earth-moon system sometimes later (because the earth-moon system's Kepler orbit around the sun remains stable in space, too). Estimates based on computer simulations of such an event suggest that some twenty percent of the original mass of Theia would have ended up as an orbiting ring of debris around the earth, and about half of this matter coalesced into the Moon.

The Earth would have gained significant amounts of angular momentum and mass from such a collision. Regardless of the speed and tilt of the Earth's rotation before the impact, it would have experienced a day some five hours long after the impact, and the Earth's equator and the Moon's orbit would have become coplanar in the aftermath of the giant impact.[13]

Not all of the ring material would have necessarily been swept up right away; the thickened crust of the Far Side suggests that a second moon about 1,000-km in diameter formed in a Lagrange point of the Moon; after tens of millions of years, as the two moons migrated outward from the Earth, solar tidal effects would have made the Lagrange orbit unstable, resulting in a slow-velocity collision that would have 'pancaked' the smaller moon onto what is now the Far Side.[14][15]

Energetic aftermath[edit]

In 2001, a team at the Carnegie Institute of Washington reported the most precise measurement of the isotopic signatures of lunar rocks.[4] To their surprise, the team found that the rocks from the Apollo program carried an isotopic signature that was identical with rocks from Earth, and were different from almost all other bodies in the Solar System. Since most of the material that went into orbit to form the Moon was thought to come from Theia, this observation was unexpected. In 2007, researchers from the California Institute of Technology showed that the likelihood of Theia having an identical isotopic signature as the Earth was very small (less than 1 percent).[16] Instead, they proposed that in the aftermath of the giant impact, while the Earth and the proto-lunar disk were molten and vaporized, the two reservoirs were connected by a common silicate vapour atmosphere, and that the Earth–Moon system became homogenized by convective stirring while the system existed in the form of a continuous fluid. Such an "equilibration" between the post-impact Earth and the proto-lunar disk is the only scenario capable of explaining the isotopic similarities of the Apollo rocks with rocks from the Earth's interior. For this scenario to be viable, however, the proto-lunar disk must exist for a time period of about 100 years. Work is ongoing to determine whether or not this is possible.

Evidence[edit]

Indirect evidence for the giant impact scenario comes from rocks collected during the Apollo Moon landings, which show oxygen isotope ratios identical to those of Earth, which can be explained if the Earth–Moon system experienced turbulent mixing in the aftermath of the giant impact, as discussed above. In addition, the highly anorthositic composition of the lunar crust, as well as the existence of KREEP-rich samples, gave rise to the idea that a large portion of the Moon once was molten, and a giant impact scenario could easily have supplied the energy needed to form such a magma ocean. Several lines of evidence show that if the Moon has an iron-rich core, it must be a small one. In particular, the mean density, moment of inertia, rotational signature, and magnetic induction response of the Moon all suggest that the radius of its core is less than about 25% the radius of the Moon, in contrast to about 50% for most of the other terrestrial bodies. Impact conditions can be found that give rise to a Moon that formed mostly from the mantles of the Earth and impactor, with the core of the impactor accreting to the Earth, and which satisfy the angular momentum constraints of the Earth–Moon system.[2]

Comparison of the zinc isotopic composition of Lunar samples with that of Earth and Mars rocks has provided further evidence for the impact hypothesis.[17] Zinc is strongly fractionated when volatilized in planetary rocks,[18][19] but not during normal igneous processes[20] — as such, the zinc abundance and isotopic composition can distinguish the two geological processes. Moon rocks contain more heavy isotopes of zinc, and overall less zinc, than corresponding igneous Earth or Mars rocks; this is consistent with zinc being depleted from Moon through evaporation, as expected for the giant impact origin.[17]

Warm silica-rich dust and abundant SiO gas, products of high velocity (> 10 km/s) impacts between rocky bodies, have been detected around the nearby (29 pc distant) young (~12 My old) Beta Pic Moving Group star HD172555 by the Spitzer Space Telescope.[21] A belt of warm dust in a zone between 0.25AU and 2AU from the young star HD 23514, in the Pleiades cluster, appears similar to the predicted results of Theia's collision with the embryonic Earth, and has been interpreted as the result of planet-sized objects colliding with each other.[22] This is similar to another belt of warm dust detected around the star, BD +20°307 (HIP 8920, SAO 75016).[23]

Difficulties[edit]

This lunar origin hypothesis has some difficulties that have yet to be fully resolved. For example, the giant impact hypothesis implies that a surface magma ocean would have formed following the impact. Yet there is no evidence that the Earth ever had such a magma ocean and it is likely there exists material that has never been processed by a magma ocean.[24]

Composition[edit]

There are a number of compositional inconsistencies that need to be addressed.

  • The ratios of the Moon's volatile elements are not explained by the giant impact hypothesis. If the giant impact hypothesis is correct, they must be due to some other cause.[24]
  • The presence of volatiles such as water trapped in lunar basalts is more difficult to explain if the Moon was caused by an impact that would entail a catastrophic heating event.[25]
  • The iron oxide (FeO) content (13%) of the Moon, which is intermediate between Mars (18%) and the terrestrial mantle (8%), rules out most of the source of the proto-lunar material from the Earth's mantle.[26]
  • If the bulk of the proto-lunar material had come from the impactor, the Moon should be enriched in siderophilic elements, when, in fact, it is deficient in those.[27]
  • The Moon's oxygen isotopic ratios are essentially identical to those of Earth.[4] Oxygen isotopic ratios, which may be measured very precisely, yield a unique and distinct signature for each solar system body.[28] If Theia had been a separate proto-planet, it probably would have had a different oxygen isotopic signature than Earth, as would the ejected mixed material.[29]
  • The Moon's titanium isotope ratio (50Ti/47Ti) appears so close to the Earth's (within 4 ppm), that little if any of the colliding body's mass could likely have been part of the Moon.[30][31]

Lack of a Venusian moon[edit]

If Earth's moon was formed by such an impact, it is possible that other inner planets also may have been subjected to comparable impacts. A moon that formed around Venus by this process would have been unlikely to escape, so if such an event had occurred there, a possible explanation of why the planet does not have such a moon might be that a second collision occurred that countered the angular momentum from the first impact.[32] Another is that the strong tidal forces from the Sun would tend to destabilize the orbits of moons around close-in planets. For this reason, if Venus's slow rotation rate began early in its history, any satellites larger than a few kilometres in size would likely have spiralled into the planet.[33]

Simulations of the chaotic period of terrestrial planet formation suggest that impacts, such as those hypothesized to have formed the Moon, were common. For typical terrestrial planets with a mass of 0.5–1 Earth masses, such an impact typically results in a single moon containing 4% of the host planet's mass. The inclination of this moon's orbit is random, but this tilt affects the subsequent dynamic evolution of the system. For example, some orbits may cause the moon to spiral back into the planet. Likewise, the proximity of the planet to the star also will affect the orbital evolution. The net effect is that it is more likely for impact-generated moons to survive when they orbit more distant terrestrial planets and to be aligned with the planetary orbit.[34]

Possible origin of Theia[edit]

One suggested pathway for the Big Splash as viewed from the direction of the south pole

In 2004, Princeton University mathematician Edward Belbruno and astrophysicist J. Richard Gott III proposed that Theia coalesced at the L4 or L5 Lagrangian point relative to Earth (in about the same orbit and about 60° ahead or behind),[35][36] similar to a trojan asteroid.[3] Two-dimensional computer models suggest that the stability of Theia's proposed trojan orbit would have been affected when its growing mass exceeded a threshold of approximately 10% of the Earth's mass (the mass of Mars).[35] In this scenario, gravitational perturbations by planetesimals caused Theia to depart from its stable Lagrangian location, and subsequent interactions with proto-Earth led to a collision between the two bodies.[35]

In 2008, evidence was presented that suggests that the collision may have occurred later than the accepted value of 4.53 Gya, at approximately 4.48 Gya.[37]

It has been suggested that other significant objects may have been created by the impact, which could have remained in orbit between the Earth and Moon, stuck in Lagrangian points. Such objects may have stayed within the Earth–Moon system for as long as 100 million years, until the gravitational tugs of other planets destabilized the system enough to free the objects.[38] A study published in 2011 suggested that a subsequent collision between the Moon and one of these smaller bodies caused the notable differences in physical characteristics between the two hemispheres of the Moon.[39] This collision, simulations have supported, would have been at a low enough velocity so as not to form a crater; instead, the material from the smaller body would have spread out across the Moon (in what would become its far side), adding a thick layer of highlands crust.[40] The resulting mass irregularities would subsequently produce a gravity gradient that resulted in tidal locking of the Moon so that today, only the near side remains visible from Earth. However, mapping by the GRAIL mission has apparently ruled out this scenario.[citation needed]

Modified hypothesis[edit]

The Giant impact hypothesis does not explain well the similar composition of Earth and the Moon. Especially, the indistinguishable relation of oxygen isotopes cannot be explained by the classical form of this hypothesis. According to research on the subject that is based on new simulations at the University of Bern by physicist Andreas Reufer and his colleagues, Theia collided directly with Earth instead of barely swiping it. The collision speed may have been higher than originally assumed, and this higher velocity may have totally destroyed Theia. According to this modification, the composition of Theia is not so restricted, making also a composition of up to 50% water ice possible.[41]

Alternative hypotheses[edit]

Other mechanisms that have been suggested at various times for the Moon's origin are that the Moon was spun off from the Earth's molten surface by centrifugal force;[6] that it was formed elsewhere and was subsequently captured by the Earth's gravitational field;[42] or that the Earth and the Moon formed at the same time and place from the same accretion disk. None of these hypotheses can account for the high angular momentum of the Earth–Moon system.[13]

Another hypothesis attributes the formation of the Moon to the impact of a large asteroid with the Earth much later than previously thought, creating the satellite primarily from debris from Earth. In this hypothesis, the formation of the Moon occurs 60–140 million years after the formation of the Solar System. Previously, the age of the Moon had been thought to be 4.527 ± 0.010 billion years.[43] The impact in this scenario would have created a magma ocean on Earth and the proto-Moon with both bodies sharing a common plasma metal vapour atmosphere. The shared metal vapour bridge would have allowed material from the Earth and proto-Moon to exchange and equilibrate into a more common composition.[44][45]

Yet another hypothesis proposes that the Moon and the Earth were created together instead of separately like the Giant Impact hypothesis suggests. The new model, developed by Robin M. Canup, suggests that the Moon and the Earth were created as a part of a massive collision of two planetary bodies, each larger than Mars, which then re-collided to form what we now call Earth. After the re-collision, Earth was surrounded by a disk of material, which combined to form the Moon. This hypothesis could explain facts which others do not.[46]

See also[edit]

References[edit]

  1. ^ a b Halliday, Alex N. (February 28, 2000). "Terrestrial accretion rates and the origin of the Moon". Earth and Planetary Science Letters 176 (1): 17–30. Bibcode:2000E&PSL.176...17H. doi:10.1016/S0012-821X(99)00317-9. 
  2. ^ a b Canup, R.; Asphaug, E. (2001). "Origin of the Moon in a giant impact near the end of the Earth's formation". Nature 412 (6848): 708–712. Bibcode:2001Natur.412..708C. doi:10.1038/35089010. PMID 11507633. Retrieved 2011-12-10. 
  3. ^ a b Mackenzie, Dana (2003). The Big Splat, or How The Moon Came To Be. John Wiley & Sons. ISBN 978-0-471-15057-2. 
  4. ^ a b c Wiechert, U. et al. (October 2001). "Oxygen Isotopes and the Moon-Forming Giant Impact". Science 294 (12): 345–348. Bibcode:2001Sci...294..345W. doi:10.1126/science.1063037. PMID 11598294. Retrieved 2009-07-05. 
  5. ^ Daniel Clery (11 October 2013). "Impact Theory Gets Whacked". Science 342: 183. doi:10.1126/science.342.6155.183. 
  6. ^ a b Binder, A. B. (1974). "On the origin of the Moon by rotational fission". The Moon 11 (2): 53–76. Bibcode:1974Moon...11...53B. doi:10.1007/BF01877794. 
  7. ^ Daly, Reginald A. (1946). "Origin of the Moon and Its Topography". PAPS 90 (2). doi:10.2307/3301051. JSTOR 3301051. 
  8. ^ Hartmann, W. K.; Davis, D. R. (April 1975). "Satellite-sized planetesimals and lunar origin". Icarus 24 (4): 504–514. Bibcode:1975Icar...24..504H. doi:10.1016/0019-1035(75)90070-6. 
  9. ^ Cameron, A. G. W.; Ward, W. R. (March 1976). "The Origin of the Moon". Abstracts of the Lunar and Planetary Science Conference 7: 120–122. Bibcode:1976LPI.....7..120C. 
  10. ^ Gray, Denis (December 2003), "Book Review: The big splat or how our moon came to be / John Wiley & Sons, 2003", Journal of the Royal Astronomical Society of Canada 97 (6): 299, Bibcode:2003JRASC..97..299G 
  11. ^ Freeman, David (2013-09-23). "How Old Is The Moon? 100 Million Years Younger Than Once Thought, New Research Suggests". Huffingtonpost.com. Retrieved 2013-09-25. 
  12. ^ Canup, Robin M. (April 2004), "Simulations of a late lunar-forming impact", Icarus 168 (2): 433–456, Bibcode:2004Icar..168..433C, doi:10.1016/j.icarus.2003.09.028 
  13. ^ a b Stevenson, D. J. (1987). "Origin of the moon–The collision hypothesis". Annual Review of Earth and Planetary Sciences 15 (1): 271–315. Bibcode:1987AREPS..15..271S. doi:10.1146/annurev.ea.15.050187.001415. 
  14. ^ Richard Lovett (2011-08-03). "Early Earth may have had two moons : Nature News". Nature.com. Retrieved 2013-09-25. 
  15. ^ "Was our two-faced moon in a small collision?". Theconversation.edu.au. Retrieved 2013-09-25. 
  16. ^ Pahlevan, Kaveh; Stevenson, David (October 2007). "Equilibration in the Aftermath of the Lunar-forming Giant Impact". EPSL 262 (3-4): 438–449. arXiv:1012.5323. Bibcode:2007E&PSL.262..438P. doi:10.1016/j.epsl.2007.07.055. 
  17. ^ a b Paniello, R. C.; Day, J. M. D.; Moynier, F. (2012). "Zinc isotopic evidence for the origin of the Moon". Nature 490 (7420): 376–379. doi:10.1038/nature11507. PMID 23075987.  edit
  18. ^ Moynier, F.; Albarède, F.; Herzog, G. F. (2006). "Isotopic composition of zinc, copper, and iron in lunar samples". Geochimica et Cosmochimica Acta 70 (24): 6103. Bibcode:2006GeCoA..70.6103M. doi:10.1016/j.gca.2006.02.030.  edit
  19. ^ Moynier, F.; Beck, P.; Jourdan, F.; Yin, Q. Z.; Reimold, U.; Koeberl, C. (2009). "Isotopic fractionation of zinc in tektites". Earth and Planetary Science Letters 277 (3–4): 482. Bibcode:2009E&PSL.277..482M. doi:10.1016/j.epsl.2008.11.020.  edit
  20. ^ Ben Othman, D.; Luck, J. M.; Bodinier, J. L.; Arndt, N. T.; Albarède, F. (2006). "Cu–Zn isotopic variations in the Earth's mantle". Geochimica et Cosmochimica Acta 70 (18): A46. Bibcode:2006GeCAS..70...46B. doi:10.1016/j.gca.2006.06.201.  edit
  21. ^ Lisse, Carey M. et al. (2009). "Abundant Circumstellar Silica Dust and SiO Gas Created by a Giant Hypervelocity Collision in the ~12 Myr HD172555 System". Astrophysical Journal 701 (2): 2019–2032. arXiv:0906.2536. Bibcode:2009ApJ...701.2019L. doi:10.1088/0004-637X/701/2/2019. 
  22. ^ Rhee, Joseph H.; Song, Inseok; Zuckerman, B. (2007). "Warm dust in the terrestrial planet zone of a sun-like Pleiad: collisions between planetary embryos?". Astrophysical Journal 675 (1): 777–783. arXiv:0711.2111v1. Bibcode:2008ApJ...675..777R. doi:10.1086/524935. 
  23. ^ Song, Inseok et al. (21 July 2005). "Extreme collisions between planetesimals as the origin of warm dust around a Sun-like star". Nature 436 (7049): 363–365. Bibcode:2005Natur.436..363S. doi:10.1038/nature03853. PMID 16034411. 
  24. ^ a b Jones, J. H. (1998). "Tests of the Giant Impact Hypothesis". Lunar and Planetary Science. Origin of the Earth and Moon Conference. Monterey, California. 
  25. ^ Saal, Alberto E. et al. (July 10, 2008). "Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior". Nature 454 (7201): 192–195. Bibcode:2008Natur.454..192S. doi:10.1038/nature07047. PMID 18615079. 
  26. ^ Taylor, Stuart R. (1997). The Bulk Composition of the Moon (PDF) 37. Lunar and Planetary Science. Bibcode:2002M&PSA..37Q.139T. Retrieved 2010-03-21. 
  27. ^ Galimov, E. M.; Krivtsov, A. M. (December 2005). "Origin of the Earth-Moon System". Journal of Earth Systems Science 114 (6): 593–600. Bibcode:2005JESS..114..593G. doi:10.1007/BF02715942. Retrieved 2011-12-10. 
  28. ^ Scott, Edward R. D. (December 3, 2001). Oxygen Isotopes Give Clues to the Formation of Planets, Moons, and Asteroids. Planetary Science Research Discoveries (PSRD). Bibcode:2001psrd.reptE..55S. Retrieved 2010-03-19. 
  29. ^ Nield, Ted (September 2009). "Moonwalk". Geological Society of London. p. 8. Retrieved 2010-03-01. 
  30. ^ Zhang, Junjun; Nicolas Dauphas, Andrew M. Davis, Ingo Leya, Alexei Fedkin (25 March 2012). "The proto-Earth as a significant source of lunar material". Nature Geoscience 5: 251–255. Bibcode:2012NatGe...5..251Z. doi:10.1038/ngeo1429. 
  31. ^ Koppes, Steve (March 28, 2012). "Titanium paternity test fingers Earth as moon’s sole parent". Zhang, Junjun. The University of Chicago. Retrieved August 13, 2012. 
  32. ^ Alemi, Alex; Stevenson, D. (September 2006), "Why Venus has No Moon", Bulletin of the American Astronomical Society 38: 491, Bibcode:2006DPS....38.0703A 
  33. ^ Sheppard, Scott S.; Trujillo, Chadwick A. (July 2009), "A survey for satellites of Venus", Icarus 202 (1): 12–16, arXiv:0906.2781, Bibcode:2009Icar..202...12S, doi:10.1016/j.icarus.2009.02.008 
  34. ^ Lewis, K. (February 2011), "Moon formation and orbital evolution in extrasolar planetary systems - A literature review", in Bouchy, F.; Díaz, R.; Moutou, C., Detection and Dynamics of Transiting Exoplanets 11, St. Michel l'Observatoire, France, Bibcode:2011EPJWC..1104003L, doi:10.1051/epjconf/20101104003 
  35. ^ a b c Belbruno, E.; Gott III, J. Richard (2005). "Where Did The Moon Come From?". The Astronomical Journal 129 (3): 1724–1745. arXiv:astro-ph/0405372. Bibcode:2005AJ....129.1724B. doi:10.1086/427539. 
  36. ^ Howard, E. (July 2005), "The effect of Lagrangian L4/L5 on satellite formation", Meteoritics & Planetary Science 40: 1115, Bibcode:2005M&PS...40.1115H, doi:10.1111/j.1945-5100.2005.tb00176.x 
  37. ^ Halliday, Alex N (November 28, 2008). "A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth". Philosophical Transactions of the Royal Society A (Philosophical Transactions of the Royal Society) 366 (1883): 4163–4181. Bibcode:2008RSPTA.366.4163H. doi:10.1098/rsta.2008.0209. PMID 18826916. 
  38. ^ Than, Ker (May 6, 2008). "Did Earth once have multiple moons?". New Scientist (Reed Business Information Ltd). Retrieved 2011-12-10. 
  39. ^ Jutzi, M.; Asphaug, E. (August 4, 2011), "Forming the lunar farside highlands by accretion of a companion moon", Nature 476: 69–72, Bibcode:2011Natur.476...69J, doi:10.1038/nature10289, PMID 21814278 
  40. ^ Choi, Charles Q. (August 3, 2011), "Earth Had Two Moons That Crashed to Form One, Study Suggests", Yahoo News, retrieved 2012-02-24 
  41. ^ Dambeck, Thorsten (11 September 2012). "Retuschen an der Entstehungsgeschichte des Erdtrabanten" [Retouches on the genesis of Earth's moon] (in German). Archived from the original on 11 September 2012. Retrieved 23 September 2012. 
  42. ^ Mitler, H. E. (1975). "Formation of an iron-poor moon by partial capture, or: Yet another exotic theory of lunar origin". Icarus 24 (2): 256–268. Bibcode:1975Icar...24..256M. doi:10.1016/0019-1035(75)90102-5. 
  43. ^ Taylor, G. Jeffrey (December 31, 1998), "Origin of the Earth and Moon", Planetary Science Research Discoveries (University of Hawaii) 
  44. ^ Touboul, Mathieu (December 20, 2007), "Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals", Nature 450: 1206–1209, Bibcode:2007Natur.450.1206T, doi:10.1038/nature06428, PMID 18097403 
  45. ^ Lovett, Richard A. (December 19, 2007), "Earth-Asteroid Collision Formed Moon Later Than Thought", National Geographic News, retrieved 2012-02-24 
  46. ^ "NASA Lunar Scientists Develop New Theory on Earth and Moon Formation". NASA Press Release (NASA). 2012-10-30. Retrieved 2012-12-05. 

Further reading[edit]

Academic articles
Non-academic books

External links[edit]