Thin plate spline

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Thin plate splines (TPS) are an interpolation and smoothing technique, the generalisation of splines so that they may be used with two or more dimensions. They were introduced to geometric design by Duchon (Duchon, 1976).

Physical analogy[edit]

The name thin plate spline refers to a physical analogy involving the bending of a thin sheet of metal. Just as the metal has rigidity, the TPS fit resists bending also, implying a penalty involving the smoothness of the fitted surface. In the physical setting, the deflection is in the z direction, orthogonal to the plane. In order to apply this idea to the problem of coordinate transformation, one interprets the lifting of the plate as a displacement of the x or y coordinates within the plane. In 2D cases, given a set of K corresponding points, the TPS warp is described by 2(K+3) parameters which include 6 global affine motion parameters and 2K coefficients for correspondences of the control points. These parameters are computed by solving a linear system, in other words, TPS has closed-form solution.

Smoothness measure[edit]

The TPS arises from consideration of the integral of the square of the second derivative -- this forms its smoothness measure. In the case where x is two dimensional, for interpolation, the TPS fits a mapping function f(x) between corresponding point-sets \{y_i\} and \{x_i\} that minimises the following energy function:


	E = \iint\left[\left(\frac{\partial^2 f}{\partial x_1^2}\right)^2 + 2\left(\frac{\partial^2 f}{\partial x_1 \partial x_2}\right)^2 + \left(\frac{\partial^2 f}{\partial x_2^2}\right)^2 \right] \textrm{d} x_1 \, \textrm{d}x_2

The smoothing variant, correspondingly, uses a tuning parameter \lambda to control how non-rigid is allowed for the deformation, balancing the aforementioned criterion with the measure of goodness of fit, thus minimising:


	E_{tps}(f) = \sum_{i=1}^K \|y_i - f(x_i) \|^2 + \lambda \iint\left[\left(\frac{\partial^2 f}{\partial x_1^2}\right)^2 + 2\left(\frac{\partial^2 f}{\partial x_1 \partial x_2}\right)^2 + \left(\frac{\partial^2 f}{\partial x_2^2}\right)^2 \right] \textrm{d} x_1 \, \textrm{d}x_2


For this variational problem, it can be shown that there exists a unique minimizer f (Wahba,1990).The finite element discretization of this variational problem, the method of elastic maps, is used for data mining and nonlinear dimensionality reduction.

Radial basis function[edit]

The Thin Plate Spline has a natural representation in terms of radial basis functions. Given a set of control points \{w_{i}, i = 1,2, \ldots,K\}, a radial basis function basically defines a spatial mapping which maps any location x in space to a new location f(x), represented by,


	f(x) = \sum_{i = 1}^K c_{i}\varphi(\left\| x - w_{i}\right\|)

where \left\|\cdot\right\| denotes the usual Euclidean norm and \{c_{i}\} is a set of mapping coefficients. The TPS corresponds to the radial basis kernel \varphi(r) = r^2 \log r.


Application[edit]

TPS has been widely used as the non-rigid transformation model in image alignment and shape matching.

The popularity of TPS comes from a number of advantages:

  1. The interpolation is smooth with derivatives of any order.
  2. The model has no free parameters that need manual tuning.
  3. It has closed-form solutions for both warping and parameter estimation.
  4. There is a physical explanation for its energy function.

See also[edit]

References[edit]

  • Haili Chui: Non-Rigid Point Matching: Algorithms, Extensions and Applications. PhD Thesis, Yale University, May 2001.
  • G. Wahba, 1990, Spline models for observational data. Philadelphia: Society for Industrial and Applied Mathematics.
  • J. Duchon, 1976, Splines minimizing rotation invariant semi-norms in Sobolev spaces. pp 85–100, In: Constructive Theory of Functions of Several Variables, Oberwolfach 1976, W. Schempp and K. Zeller, eds., Lecture Notes in Math., Vol. 571, Springer, Berlin, 1977

External links[edit]