Time-resolved mass spectrometry

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Time-resolved mass spectrometry (TRMS) is a strategy in analytical chemistry that uses mass spectrometry platform to collect data with temporal resolution.[1][2] Implementation of TRMS builds on the ability of mass spectrometers to process ions within sub-second duty cycles. It often requires the use of customized experimental setups. However, they can normally incorporate commercial mass spectrometers. As a concept in analytical chemistry TRMS encompasses instrumental developments (e.g. interfaces, ion sources, mass analyzers), methodological developments, and applications.

Applications[edit]

An early application of TRMS was in the observation of flash photolysis process.[3] It took advantage of a time-of-flight mass analyzer.[4] TRMS currently finds applications in the monitoring of organic reactions,[5] formation of reactive intemediates,[6] enzyme-catalyzed reactions,[7] convection,[8] protein folding,[9] extraction,[10] and other chemical and physical processes.

Temporal resolution[edit]

TRMS is typically implemented to monitor processes that occur on second to millisecond time scale. However, there exist reports from studies in which sub-millisecond resolutions were achieved.[3][4][11]

References[edit]

  1. ^ Chen, Yu-Chie; Urban, Pawel L. (2013). "Time-resolved mass spectrometry". TrAC Trends in Analytical Chemistry 44: 106–20. doi:10.1016/j.trac.2012.11.010. 
  2. ^ Rob, Tamanna; Wilson, Derek (2012). "Time-resolved mass spectrometry for monitoring millisecond time-scale solution-phase processes". European Journal of Mass Spectrometry 18 (2): 205–14. doi:10.1255/ejms.1176. PMID 22641726. 
  3. ^ a b "Flash Photolysis and Time‐Resolved Mass Spectrometry. I. Detection of the Hydroxyl Radical". Retrieved 27 January 2014. 
  4. ^ a b "Apparatus for flash photolysis and time resolved mass spectrometry". Retrieved 27 January 2014. 
  5. ^ Miao, Zhixin; Chen, Hao; Liu, Pengyuan; Liu, Yan (2011). "Development of Submillisecond Time-Resolved Mass Spectrometry Using Desorption Electrospray Ionization". Analytical Chemistry 83 (11): 3994–7. doi:10.1021/ac200842e. PMID 21539335. 
  6. ^ Perry, Richard H.; Splendore, Maurizio; Chien, Allis; Davis, Nick K.; Zare, Richard N. (2011). "Detecting Reaction Intermediates in Liquids on the Millisecond Time Scale Using Desorption Electrospray Ionization". Angewandte Chemie International Edition 50 (1): 250–4. doi:10.1002/anie.201004861. PMID 21110361. 
  7. ^ Ting, Hsu; Urban, Pawel L. (2014). "Spatiotemporal effects of a bioautocatalytic chemical wave revealed by time-resolved mass spectrometry". RSC Advances 4 (5): 2103–8. doi:10.1039/C3RA42873G. 
  8. ^ Li, Po-Han; Ting, Hsu; Chen, Yu-Chie; Urban, Pawel L. (2012). "Recording temporal characteristics of convection currents by continuous and segmented-flow sampling". RSC Advances 2 (32): 12431–7. doi:10.1039/C2RA21695G. 
  9. ^ Breuker, K.; McLafferty, F. W. (2008). "Stepwise evolution of protein native structure with electrospray into the gas phase, 10-12 to 102 s". Proceedings of the National Academy of Sciences 105 (47): 18145–52. Bibcode:2008PNAS..10518145B. doi:10.1073/pnas.0807005105. JSTOR 25465429. PMC 2587555. PMID 19033474. 
  10. ^ Hu, J.-B.; Chen, S.-Y.; Wu, J.-T.; Chen, Y.-C.; Urban, P L. (2014). "Automated system for extraction and instantaneous analysis of millimeter-sized samples". RSC Advances 4: 10693–10701. doi:10.1039/C3RA48023B. 
  11. ^ Miao, Zhixin; Chen, Hao; Liu, Pengyuan; Liu, Yan (2011). "Development of Submillisecond Time-Resolved Mass Spectrometry Using Desorption Electrospray Ionization". Analytical Chemistry 83 (11): 3994–7. doi:10.1021/ac200842e. PMID 21539335.