Timeline of natural history

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Visual representation of the history of life on Earth as a spiral

This timeline of natural history summarizes significant cosmological, geological and biological events from the formation of the Universe to the rise of modern humans. Times are listed in millions of years, or megaanni (Ma).

Formation of the Universe[edit]

  • 13,798 ± 0,037 Ma ago: estimated age of the universe according to the Big Bang theory
  • 13,600–13,500 Ma: First stars begin to shine
  • 13,200 Ma: age of the oldest known star in the galaxy, HE 1523-0901.
  • 13,100 Ma: Galaxies form
  • 12,700 Ma: age of the quasar CFHQS 1641+3755
  • 9,000 Ma: Earliest Population I, or Sunlike stars.

The earliest Solar System[edit]

In the earliest solar system history, the sun, the planetesimals and the jovian planets were formed. The inner solar system aggregated more slowly than the outer, so the terrestrial planets were not yet formed, including Earth and Moon.

Hadean Eon[edit]

Archaean Eon[edit]

Eoarchaean Era[edit]

Paleoarchean Era[edit]

Mesoarchaean Era[edit]

Neoarchaean Era[edit]

Proterozoic Eon[edit]

Paleoproterozoic Era[edit]

Siderian Period[edit]

Rhyacian Period[edit]

Orosirian Period[edit]

Statherian Period[edit]

Mesoproterozoic Era[edit]

Calymmian Period[edit]

Ectasian Period[edit]

Stenian Period[edit]

Neoproterozoic Era[edit]

Tonian Period[edit]

Cryogenian Period[edit]

Ediacaran Period[edit]

Phanerozoic Eon[edit]

Paleozoic Era[edit]

Cambrian Period[edit]

Ordovician Period[edit]

Silurian Period[edit]

  • 443.4 ± 1.5 Ma: Beginning of the Silurian and the end of the Ordovician Period.
  • 420 Ma: First creature took a breath of air. First ray-finned fish and land scorpions.
  • 410 Ma: First toothed fish and nautiloids.

Devonian Period[edit]

Carboniferous Period[edit]

Permian Period[edit]

Mesozoic Era[edit]

Triassic Period[edit]

Jurassic Period[edit]

Cretaceous Period[edit]

Cenozoic Era[edit]

Paleogene Period[edit]

Neogene Period[edit]

Quaternary Period[edit]

Etymology of period names[edit]

Period Started Root word Meaning Reason for name
Siderian 2500 Ma Greek sidēros iron ref. the banded iron formations
Rhyacian 2300 Ma Gk. rhyax lava flow much lava flowed
Orosirian 2050 Ma Gk. oroseira mountain range much orogeny in this period's latter half
Statherian 1800 Ma Gk. statheros steady continents became stable cratons
Calymmian 1600 Ma Gk. calymma cover platform covers developed or expanded
Ectasian 1400 Ma Gk. ectasis stretch platform covers expanded
Stenian 1200 Ma Gk. stenos narrow much orogeny, which survives as narrow metamorphic belts
Tonian 1000 Ma Gk. tonos stretch The continental crust stretched as Rodinia broke up
Cryogenian 850 Ma Gk. cryogenicos cold-making In this period all the Earth froze over
Ediacaran 635Ma Ediacara Hills place in Australia where the Ediacaran biota fossils were found
Cambrian 541Ma Latin Cambria Wales ref. to the place in Great Britain where Cambrian rocks are best exposed
Ordovician 485.4 Ma Celtic Ordovices Tribe in north Wales, where the rocks were first identified
Silurian 443.4 Ma Ctc. Silures Tribe in south Wales, where the rocks were first identified
Devonian 419.2Ma Devon County in England in which rocks from this period were first identified
Carboniferous 358.9 Ma Lt. carbo coal Global coal beds were laid in this period
Permian 298.9Ma Perm Krai Region in Russia where rocks from this period were first identified
Triassic 252.2 Ma Lt. trias triad In Germany this period forms three distinct layers
Jurassic 201.3Ma Jura Mountains Mountain range in the Alps in which rocks from this period were first identified
Cretaceous 145Ma Lt. creta chalk More chalk formed in this period than any other
Paleogene 66Ma Gk. palaiogenos "ancient born"
Neogene 23.03Ma Gk. neogenos "new born"
Quaternary 2.588 Ma Lt. quaternarius "fourth" This was initially deemed the "fourth" period after the now-obsolete "primary", "secondary" and "tertiary" periods.

References[edit]

  1. ^ Amelin,Yuri, Alexander N. Krot, Ian D. Hutcheon, & Alexander A. Ulyanov (Sept 2002), "Lead Isotopic Ages of Chondrules and Calcium-Aluminum-Rich Inclusions" (Science, 6 September 2002: Vol. 297. no. 5587, pp. 1678 - 1683)
  2. ^ According to isotopicAges, the Ca-Al-I's (= Ca-Al-rich inclusions) here formed in a proplyd (= protoplanetary disk]).
  3. ^ Courtland, Rachel (July 2, 2008). "Did newborn Earth harbour life?". New Scientist. Retrieved April 13, 2014. 
  4. ^ Taylor, G. Jeffrey (2006), "Wandering Gas Giants and Lunar Bombardment: Outward migration of Saturn might have triggered a dramatic increase in the bombardment rate on the Moon 3.9 billion years ago, an idea testable with lunar samples" [1]
  5. ^ Mojzis, S, et al. (1996), Evidence for Life on Earth before 3800 million years ago", (Nature, 384)
  6. ^ Yoko Ohtomo, Takeshi Kakegawa, Akizumi Ishida, Toshiro Nagase, Minik T. Rosing (8 December 2013). "Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks". Nature Geoscience. doi:10.1038/ngeo2025. Retrieved 9 Dec 2013. 
  7. ^ Borenstein, Seth (13 November 2013). "Oldest fossil found: Meet your microbial mom". AP News. Retrieved 15 November 2013. 
  8. ^ Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M. (8 November 2013). "Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia". Astrobiology (journal). doi:10.1089/ast.2013.1030. Retrieved 15 November 2013. 
  9. ^ a b c d Eriksson, P.G.; Catuneanu, Octavian; Nelson, D.R.; Mueller, W.U.; Altermann, Wladyslaw (2004), "Towards a Synthesis (Chapter 5)", in Eriksson, P.G.; Altermann, Wladyslaw; Nelson, D.R.; Mueller, W.U.; Catuneanu, Octavian, The Precambrian Earth: Tempos and Events, Developments in Precambrian Geology 12, Amsterdam, The Netherlands: Elsevier, pp. 739–769, ISBN 978-0-444-51506-3 
  10. ^ Brocks et al. (1999), "Archaean molecular fossils and the early rise of eukaryotes", (Science 285)
  11. ^ Canfield, D (1999), "A Breath of Fresh Air" (Nature 400)
  12. ^ Rye, E. and Holland, H. (1998), "Paleosols and the evolution of atmospheric oxygen", (Amer. Journ. of Science, 289)
  13. ^ Cowan, G (1976), A natural fission reactor (Scientific American, 235)
  14. ^ Bernstein H, Bernstein C (May 1989). "Bacteriophage T4 genetic homologies with bacteria and eucaryotes". J. Bacteriol. 171 (5): 2265–70. PMC 209897. PMID 2651395. 
  15. ^ Butterfield NJ. (2000). Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26(3), 386-404. doi: 10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2
  16. ^ Bernstein H, Bernstein C, Michod RE (2012). DNA repair as the primary adaptive function of sex in bacteria and eukaryotes. Chapter 1: pp.1-49 in: DNA Repair: New Research, Sakura Kimura and Sora Shimizu editors. Nova Sci. Publ., Hauppauge, N.Y. ISBN 978-1-62100-808-8 https://www.novapublishers.com/catalog/product_info.php?products_id=31918

See also[edit]