Tool steel

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Tool steel refers to a variety of carbon and alloy steels that are particularly well-suited to be made into tools. Their suitability comes from their distinctive hardness, resistance to abrasion, their ability to hold a cutting edge, and/or their resistance to deformation at elevated temperatures (red-hardness). Tool steel is generally used in a heat-treated state. Many high carbon tool steels are also more resistant to corrosion due to their higher ratios of elements such as vanadium and niobium.

With a carbon content between 0.7% and 1.5%, tool steels are manufactured under carefully controlled conditions to produce the required quality. The manganese content is often kept low to minimize the possibility of cracking during water quenching. However, proper heat treating of these steels is important for adequate performance, and there are many suppliers who provide tooling blanks intended for oil quenching.

Tool steels are made to a number of grades for different applications. Choice of grade depends on, among other things, whether a keen cutting edge is necessary, as in stamping dies, or whether the tool has to withstand impact loading and service conditions encountered with such hand tools as axes, pickaxes, and quarrying implements. In general, the edge temperature under expected use is an important determinant of both composition and required heat treatment. The higher carbon grades are typically used for such applications as stamping dies, metal cutting tools, etc.

Tool steels are also used for special applications like injection molding because the resistance to abrasion is an important criterion for a mold that will be used to produce hundreds of thousands of parts.

The AISI-SAE grades of tool steel is the most common scale used to identify various grades of tool steel. Individual alloys within a grade are given a number; for example: A2, O1, etc.

Water-hardening types[edit]

W-type tool steel gets its name from its defining property of having to be water quenched. W-grade steel is essentially high carbon plain-carbon steel. This type of tool steel is the most commonly used tool steel because of its low cost compared to other tool steels. They work well for small parts and applications where high temperatures are not encountered; above 150 °C (302 °F) it begins to soften to a noticeable degree. Hardenability is low so W-grade tool steels must be quenched in water. These steels can attain high hardness (above HRC 66) and are rather brittle compared to other tool steels. W steels are still sold, especially for springs,but are much less widely used than they were in the 19th and early 20th centuries. This is partly because W steels warp and crack much more in quench than oil-quenched or air hardeneing steels.

The toughness of W-type tool steels are increased by alloying with manganese, silicon and molybdenum. Up to 0.20% of vanadium is used to retain fine grain sizes during heat treating.

Typical applications for various carbon compositions are:

  • 0.60–0.75% carbon: machine parts, chisels, setscrews; properties include medium hardness with good toughness and shock resistance.
  • 0.76–0.90% carbon: forging dies, hammers, and sledges.
  • 0.91–1.10% carbon: general purpose tooling applications that require a good balance of wear resistance and toughness, such as rasps, drills, cutters, and shear blades.
  • 1.11–1.30% carbon: files, small drills, lathe tools, razor blades, and other light-duty applications where more wear resistance is required without great toughness. Steel of about 0.8 % C gets as hard as steel with more carbon, but the free iron carbide particles in 1% or 1.25% carbon steel make it hold an edge better. However, the fine edge probably rusts off faster than it wears off, if it is used to cut acidic or salty materials.

Cold-working types[edit]

These tool steels are used on larger parts or parts that require minimal distortion during hardening. The use of oil quenching and air hardening helps reduce distortion as opposed to higher stress caused by quicker water quenching. More alloying elements are used in these steels, as compared to water-hardening grades. These alloys increase the steels' hardenability, and thus require a less severe quenching process. These steels are also less likely to crack and are often used to make knife blades.

Oil-hardening types[edit]

Grade Composition Notes
O1 0.90% C, 1.0–1.4% Mn, 0.50% Cr, 0.50% Ni, 0.50% W It is a very good cold work steel and also makes very good knives. It can be hardened to about 57-61 HRC.

Air-hardening types[edit]

The first air hardening grade tool steel was mushet steel, which was known as air-hardening steel at the time.

Modern air-hardening steels are characterized by low distortion during heat treatment because of their high-chromium content. They also harden in air because they have more alloyants than oil-hardening grades. Their machinability is good for tool steels and they have a balance of wear resistance and toughness (i.e. between the D- and shock-resistant grades).[1]

Grade Composition Notes
A2[2] 1.0% C, 1.0% Mn, 5.0% Cr, 0.3% Ni, 1.0% Mo, 0.15–0.50% V A common general purpose tool steel; it is the most commonly used variety of air-hardening steel. It is commonly used for blanking and forming punches, trimming dies, thread rolling dies, and injection molding dies.[1]
A3[3] 1.25% C, 0.5% Mn, 5.0% Cr, 0.3% Ni, 0.9–1.4% Mo, 0.8–1.4% V
A4[4] 1.0% C, 2.0% Mn, 1.0% Cr, 0.3% Ni, 0.9–1.4% Mo
A6[5] 0.7% C, 1.8–2.5% Mn, 0.9–1.2% Cr, 0.3% Ni, 0.9–1.4% Mo This type of tool steel air-hardens at a relatively low temperature (approximately the same temperature as oil-hardening types) and is dimensionally stable. Therefore it is commonly used for dies, forming tools, and gauges that do not require extreme wear resistance but do need high stability.[1]
A7[6] 2.00–2.85% C, 0.8% Mn, 5.00–5.75% Cr, 0.3% Ni, 0.9–1.4% Mo, 3.9–5.15% V, 0.5–1.5 W
A8[7] 0.5–0.6% C, 0.5% Mn, 4.75–5.50% Cr, 0.3% Ni, 1.15–1.65% Mo, 1.0–1.5 W
A9[8] 0.5% C, 0.5% Mn, 0.95–1.15% Si, 4.75–5.00% Cr, 1.25–1.75% Ni, 1.3–1.8% Mo, 0.8–1.4% V
A10[9] 1.25–1.50% C, 1.6–2.1% Mn, 1.0–1.5% Si, 1.55–2.05% Ni, 1.25–1.75% Mo This grade contains a uniform distribution of graphite particles to increase machinability and provide self-lubricating properties. It is commonly used for gauges, arbors, shears, and punches.[10]

D-types[edit]

D-type tool steels contain between 10% and 13% chromium. These steels retain their hardness up to a temperature of 425 °C (797 °F). Common applications for these tool steels include forging dies, die-casting die blocks, and drawing dies. Due to their high chromium content, certain D-grade tool steels are often considered stainless or semi-stainless, however their corrosion resistance is very limited due to the precipitation of the majority of their chromium and carbon constituents as carbides.

Grade Composition Notes
D2 1.5% C, 11.0–13.0% Cr; additionally 0.45% Mn, 0.030% P, 0.030% S, 1.0% V, 0.9% Mo, 0.30% Si D2 is very wear resistant but not as tough as lower alloyed steels. The mechanical properties of D2 are very sensitive to heat treatment. It is widely used for the production of shear blades, planer blades and industrial cutting tools; sometimes used for knife blades.

1.2767[edit]

ISO 1.2767, also known as DIN X 45 NiCrMo 4, AISI 6F7, and BS EN 20 B, is an air hardening tool steel with a primary alloying element of nickel. It possesses good toughness, stable grains, and is highly polishable. It is primarily used for dies in plastic injection molding application that involve high stresses. Other applications include blanking dies, forging dies, and industrial blades.[11]

Shock resisting types[edit]

S-type tool steels are designed to resist shock at both low and high temperatures. A low carbon content is required for the necessary toughness (approximately 0.5% carbon). Carbide-forming alloys provide the necessary abrasion resistance, hardenability, and hot-working characteristics. This family of steels displays very high impact toughness and relatively low abrasion resistance and can attain relatively high hardness (HRC 58/60). This type of steel is used in applications such as the production of jackhammer bits. In the US, toughness usually derives from 1 to 2% silicon and 0.5-1% molybdenum content. In Europe, shock steels often contain .5-.6 % carbon and around 3% nickel. 1.75% to 2.75% nickel is still used in some shock resisting and high strength low alloy steels (HSLA), such as L6, 4340, and Swedish saw steel, but it is relatively expensive.

High speed types[edit]

Main article: High speed steel

T-type and M-type tool steels are used for cutting tools where strength and hardness must be retained at temperatures up to or exceeding 760 °C (1,400 °F). M-type tool steels were developed to reduce the amount of tungsten and chromium required.

T1 (also known as 18-4-1) is a common T-type alloy. Its composition is 0.7% carbon, 18% tungsten, 4% chromium, and 1% vanadium. M2 is a common M-type alloy.

Hot-working types[edit]

H-type tool steels were developed for strength and hardness during prolonged exposure to elevated temperatures. All of these tool steels use a substantial amount of carbide forming alloys. H1 to H19 are based on a chromium content of 5%; H20 to H39 are based on a tungsten content of 9-18% and a chromium content of 3–4%; H40 to H59 are molybdenum based.

Special purpose types[edit]

  • P-type tool steel is short for plastic mold steels. They are designed to meet the requirements of zinc die casting and plastic injection molding dies.
  • L-type tool steel is short for low alloy special purpose tool steel. L6 is extremely tough.
  • F-type tool steel is water hardened and substantially more wear resistant than W-type tool steel.

Comparison[edit]

AISI-SAE tool steel grades[12]
Defining property AISI-SAE grade Significant characteristics
Water-hardening W
Cold-working O Oil-hardening
A Air-hardening; medium alloy
D High carbon; high chromium
Shock resisting S
High speed T Tungsten base
M Molybdenum base
Hot-working H H1–H19: chromium base
H20–H39: tungsten base
H40–H59: molybdenum base
Plastic mold P
Special purpose L Low alloy
F Carbon tungsten

See also[edit]

References[edit]

  1. ^ a b c Oberg et al. 2004, pp. 466–467.
  2. ^ AISI A2, Efunda, archived from the original on 2010-12-25, retrieved 2010-12-25. 
  3. ^ AISI A3, Efunda, archived from the original on 2010-12-25, retrieved 2010-12-25. 
  4. ^ AISI A4, Efunda, archived from the original on 2010-12-25, retrieved 2010-12-25. 
  5. ^ AISI A6, Efunda, archived from the original on 2010-12-25, retrieved 2010-12-25. 
  6. ^ AISI A7, Efunda, archived from the original on 2010-12-25, retrieved 2010-12-25. 
  7. ^ AISI A8, Efunda, archived from the original on 2010-12-25, retrieved 2010-12-25. 
  8. ^ AISI A9, Efunda, archived from the original on 2010-12-25, retrieved 2010-12-25. 
  9. ^ AISI A10, Efunda, archived from the original on 2010-12-25, retrieved 2010-12-25. 
  10. ^ A-10 Tool Steel Material Information, archived from the original on 2010-12-25, retrieved 2010-12-25. 
  11. ^ Plastid Mould Steel / Cold Working Steel, archived from the original on 2010-11-27, retrieved 2010-11-27. 
  12. ^ Oberg et al. 2004, p. 452.

Bibliography[edit]

External links[edit]