Transistor count

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Plot of transistor counts against dates of introduction. The curve shows counts doubling every two years.
A circuit board with a 4×4 array of SyNAPSE-developed chips. Built on 28nm process technology, the 5.4 billion transistor chip has one of the highest transistor counts of any chip produced as of 2014.

The transistor count of a device is the number of transistors in the device. Transistor count is the most common measure of integrated circuit complexity. According to Moore's Law, the transistor count of the integrated circuits doubles every two years. On most modern microprocessors, the majority of transistors are contained in caches.

As of 2014, the highest transistor count in a commercially available CPU is over 4.3 billion transistors, in Intel's 15-core Xeon IvyBridge-EX.

On August 7 2014, IBM announced their second generation SyNAPTIC chip, Which contains the most transistors in a Neurosynaptic chip to date at 5.4 billion.

Xilinx currently holds the "world-record" for a FPGA containing more than 20 billion transistors.

Transistor count[edit]

Microprocessors[edit]

A microprocessor incorporates the functions of a computer's central processing unit on a single integrated circuit. It is a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output.

Processor Transistor count Date of introduction Manufacturer Process Area
Intel 4004 2,300 1971 Intel 10 µm 12 mm²
Intel 8008 3,500 1972 Intel 10 µm 14 mm²
MOS Technology 6502 3,510[1] 1975 MOS Technology 8 μm 21 mm²
Motorola 6800 4,100 1974 Motorola 6 μm 16 mm²
Intel 8080 4,500 1974 Intel 6 μm 20 mm²
RCA 1802 5,000 1974 RCA 5 μm 27 mm²
Intel 8085 6,500 1976 Intel 3 μm 20 mm²
Zilog Z80 8,500 1976 Zilog 4 μm 18 mm²
Motorola 6809 9,000 1978 Motorola 5 μm 21 mm²
Intel 8086 29,000 1978 Intel 3 μm 33 mm²
Intel 8088 29,000 1979 Intel 3 μm 33 mm²
WDC 65C02 11,500[2] 1981 WDC 3 µm 6 mm²
Intel 80186 55,000 1982 Intel 3 μm 60 mm²
Motorola 68000 68,000 1979 Motorola 3.5 μm 44 mm²
Intel 80286 134,000 1982 Intel 1.5 µm 49 mm²
WDC 65C816 22,000[3] 1983 WDC 9 mm²
Motorola 68020 200,000 1984 Motorola 2 μm
Intel 80386 275,000 1985 Intel 1.5 µm 104 mm²
ARM 1 25,000[4] 1985 Acorn
Novix NC4016 16,000[5] 1985[6] Harris Corporation 3 μm[7]
ARM 2 25,000 1986 Acorn
Intel i960 250,000[8] 1988 Intel 0.6 µm
Intel 80486 1,180,235 1989 Intel 1 µm 173 mm²
ARM 3 300,000[4] 1989 Acorn
R4000 1,350,000 1991 MIPS 1.0 µm 213 mm²
ARM 6 30,000 1991 ARM
Pentium 3,100,000 1993 Intel 0.8 µm 294 mm²
ARM 7 578,977[9] 1994 ARM 68.51 mm²
Pentium Pro 5,500,000[10] 1995 Intel 0.5 µm 307 mm²
AMD K5 4,300,000 1996 AMD 0.5 µm 251 mm²
Pentium II Klamath 7,500,000 1997 Intel 0.35 µm 195 mm²
Pentium II Deschutes 7,500,000 1998 Intel 0.25 µm 113 mm²
AMD K6 8,800,000 1997 AMD 0.35 µm 162 mm²
Pentium III Katmai 9,500,000 1999 Intel 0.25 µm 128 mm²
Pentium III Coppermine 21,000,000 2000 Intel 180 nm 80 mm²
Pentium III Tualatin 45,000,000 2001 Intel 130 nm 81 mm²
AMD K6-III 21,300,000 1999 AMD 0.25 µm 118 mm²
AMD K7 22,000,000 1999 AMD 0.25 µm 184 mm²
Pentium 4 Willamette 42,000,000 2000 Intel 180 nm 217 mm²
Pentium 4 Northwood 55,000,000 2002 Intel 130 nm 145 mm²
Pentium 4 Prescott 112,000,000 2004 Intel 90 nm 110 mm²
Pentium 4 Prescott-2M 169,000,000 2005 Intel 90 nm 143 mm²
Pentium 4 Cedar Mill 184,000,000 2006 Intel 65 nm 90 mm²
Atom 47,000,000 2008 Intel 45 nm 24 mm²
Barton 54,300,000 2003 AMD 130 nm 101 mm²
AMD K8 105,900,000 2003 AMD 130 nm 193 mm²
Itanium 2 McKinley 220,000,000 2002 Intel 180 nm 421 mm²
Cell 241,000,000 2006 Sony/IBM/Toshiba 90 nm 221 mm²
Core 2 Duo Conroe 291,000,000 2006 Intel 65 nm 143 mm²
Core 2 Duo Allendale 169,000,000 2007 Intel 65 nm 111 mm²
Itanium 2 Madison 6M 410,000,000 2003 Intel 130 nm 374 mm²
AMD K10 quad-core 2M L3 463,000,000[11] 2007 AMD 65 nm 283 mm²
ARM Cortex-A9 26,000,000[12] 2007 ARM
AMD K10 quad-core 6M L3 758,000,000[11] 2008 AMD 45 nm 258 mm²
Itanium 2 with 9MB cache 592,000,000 2004 Intel 130 nm 432 mm²
Core 2 Duo Wolfdale 411,000,000 2007 Intel 45 nm 107 mm²
Core 2 Duo Wolfdale3M 230,000,000 2008 Intel 45 nm 83 mm²
Core i7 (Quad) 731,000,000 2008 Intel 45 nm 263 mm²
POWER6 789,000,000 2007 IBM 65 nm 341 mm²
Six-Core Opteron 2400 904,000,000 2009 AMD 45 nm 346 mm²
16-Core SPARC T3 1,000,000,000[13] 2010 Sun/Oracle 40 nm 377 mm²
Quad-Core + GPU Core i7 1,160,000,000 2011 Intel 32 nm 216 mm²
Six-Core Core i7 (Gulftown) 1,170,000,000 2010 Intel 32 nm 240 mm²
8-core POWER7 32M L3 1,200,000,000 2010 IBM 45 nm 567 mm²
8-Core AMD Bulldozer 1,200,000,000[14] 2012 AMD 32nm 315 mm²
Quad-Core + GPU AMD Trinity 1,303,000,000 2012 AMD 32 nm 246 mm²
Quad-core z196[15] 1,400,000,000 2010 IBM 45 nm 512 mm²
Quad-Core + GPU Core i7 1,400,000,000 2012 Intel 22 nm 160 mm²
Dual-Core Itanium 2 1,700,000,000[16] 2006 Intel 90 nm 596 mm²
Six-Core Xeon 7400 1,900,000,000 2008 Intel 45 nm 503 mm²
Quad-Core Itanium Tukwila 2,000,000,000[17] 2010 Intel 65 nm 699 mm²
8-core POWER7+ 80M L3 2,100,000,000 2012 IBM 32 nm 567 mm²
Six-Core Core i7/8-Core Xeon E5
(Sandy Bridge-E/EP)
2,270,000,000 [18] 2011 Intel 32 nm 434 mm²
8-Core Xeon Nehalem-EX 2,300,000,000[19] 2010 Intel 45 nm 684 mm²
10-Core Xeon Westmere-EX 2,600,000,000 2011 Intel 32 nm 512 mm²
Six-core zEC12 2,750,000,000 2012 IBM 32 nm 597 mm²
8-Core Itanium Poulson 3,100,000,000 2012 Intel 32 nm 544 mm²
12-Core POWER8 4,200,000,000 2013 IBM 22 nm 650 mm²
15-Core Xeon Ivy Bridge-EX 4,310,000,000[20] 2014 Intel 22 nm 541 mm²
62-Core Xeon Phi 5,000,000,000 2012 Intel 22 nm
Xbox One Main SoC 5,000,000,000 2013 Microsoft/AMD 28 nm 363 mm²
SPARC M7 >10,000,000,000 2014 Oracle 20 nm ?

Transistorized computers[edit]

The "second generation" of computers (transistor computers) featured boards filled with discrete transistors and magnetic memory cores.

Processor Transistor count Date of introduction Manufacturer Process Area
"Transistor Computer" (full size) 200 point-contact transistors 1955 University of Manchester ? ?
PDP-1 2,700 discrete transistors 1959 Digital Equipment Corporation
M18 FADAC 1,600 discrete transistors 1960 Autonetics ? ?
D-17B 1,521 discrete transistors 1962 Autonetics ? ?
Apollo Guidance Computer 12,300 (4,100 ICs, each containing a single 3-transistor 3-input NOR gate) 1966 Raytheon / MIT Instrumentation Laboratory ? ?

GPUs[edit]

A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the building of images in a frame buffer intended for output to a display.

Processor Transistor count Date of introduction Manufacturer Process Area
NV3 3,500,000 1997 NVIDIA 350 nm 90 mm²
Rage 128 8,000,000 1999 AMD 250 nm 70 mm²
NV5 15,000,000 1999 NVIDIA 250 nm
NV10 17,500,000 1999 NVIDIA 220 nm 111 mm²
NV11 20,000,000 2000 NVIDIA 180 nm 65 mm²
NV15 25,000,000 2000 NVIDIA 180 nm 81 mm²
R100 30,000,000 2000 AMD 180 nm 97 mm²
NV20 57,000,000 2001 NVIDIA 150 nm 128 mm²
R200 60,000,000 2001 AMD 150 nm 68 mm²
NV25 63,000,000 2002 NVIDIA 150 nm 142 mm²
R300 107,000,000 2002 AMD 150 nm 218 mm²
R360 117,000,000 2003 AMD 150 nm 218 mm²
NV38 135,000,000 2003 NVIDIA 130 nm 207 mm²
R480 160,000,000 2004 AMD 130 nm 297 mm²
NV40 222,000,000 2004 NVIDIA 130 nm 305 mm²
G70 303,000,000 2005 NVIDIA 110 nm 333 mm²
R520 321,000,000 2005 AMD 90 nm 288 mm²
R580 384,000,000 2006 AMD 90 nm 352 mm²
G80 681,000,000 2006 NVIDIA 90 nm 480 mm²
R600 Pele 700,000,000 2007 AMD 80 nm 420 mm²
G92 754,000,000 2007 NVIDIA 65 nm 324 mm²
RV790XT Spartan 959,000,000[21] 2008 AMD 55 nm 282 mm²
GT200 Tesla 1,400,000,000[22] 2008 NVIDIA 65 nm 576 mm²
Cypress RV870 2,154,000,000[23] 2009 AMD 40 nm 334 mm²
Cayman RV970 2,640,000,000 2010 AMD 40 nm 389 mm²
GF100 Fermi 3,200,000,000[24] Mar 2010 NVIDIA 40 nm 526 mm²
GF110 Fermi 3,000,000,000[24] Nov 2010 NVIDIA 40 nm 520 mm²
GK104 Kepler 3,540,000,000[25] 2012 NVIDIA 28 nm 294 mm²
Tahiti RV1070 4,312,711,873[26] 2011 AMD 28 nm 365 mm²
GK110 Kepler 7,080,000,000[27] 2012 NVIDIA 28 nm 561 mm²
RV1090 Hawaï 6,300,000,000 2013 AMD 28 nm 438 mm²

FPGA[edit]

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing.

FPGA Transistor count Date of introduction Manufacturer Process Area
Virtex ~70,000,000 1997 Xilinx
Virtex-E ~200,000,000 1998 Xilinx
Virtex-II ~350,000,000 2000 Xilinx 130 nm
Virtex-II PRO ~430,000,000 2002 Xilinx
Virtex-4 1,000,000,000 2004 Xilinx 90 nm
Virtex-5 1,100,000,000[28] 2006 Xilinx 65 nm
Stratix IV 2,500,000,000[29] 2008 Altera 40 nm
Stratix V 3,800,000,000[30] 2011 Altera 28 nm
Virtex-7 6,800,000,000[31] 2011 Xilinx 28 nm
Virtex-Ultrascale XCVU440 20,000,000,000+[32] 2014 Xilinx 20 nm

Logic functions[edit]

Transistor count for generic logic functions is based on static CMOS implementation.[33]

Function Transistor count
NOT 2
BUF 4
NAND 2-input 4
NOR 2-input 4
AND 2-input 6
OR 2-input 6
NAND 3-input 6
NOR 3-input 6
XOR 2-input 6
XNOR 2-input 8
MUX 2-input with TG 6
MUX 4-input with TG 18
NOT MUX 2-input 8
MUX 4-input 24
Adder full 28
Latch, D gated 8
Flip-flop, edge triggered dynamic D with reset 12

Memory[edit]

Semiconductor memory is an electronic data storage device, often used as computer memory, implemented on integrated circuit.

We know that in order to store a single bit (which may be 1 or 0), one flip-flop is required, made of around 8 transistors. Typical CMOS Static random-access memory (SRAM) consists of 6 transistors. For Dynamic random-access memory (DRAM), 1T1C, which means one transistor and one capacitor structure is common. Capacitor charged or not is used to store 1 or 0. For flash memory, the data is stored in floating gate, and the resistance of the transistor is sensed to interpret the data stored. Depending on how fine scale the resistance could be separated, one transistor could store up to 3-bits, meaning 8 distinctive level of resistance possible per transistor. However, the fine the scale comes with cost of repeatability therefore reliability. Typically, low grade 2-bits MLC flash is used for flash drive, so a 16GB flash drive contains roughly 64billion transistors.

Chip Capacity & Type Transistor count Date of introduction Manufacturer Process Area
? 256-bit ROM bipolar TTL ? 1965 Sylvania ? ?
? 1024-bit ROM MOS ? 1965 General Microelectronics ? ?
SP95 16-bit SRAM bipolar ? 1965 IBM ? ?
? 128-bit RAM ? 1969 IBM ? ?
512-bit PROM bipolar TTL ? 1970 Radiation Inc. ? ?
93400 256-bit RAM ? 1970 Fairchild ? ?
1103[34][35] 1kb DRAM ?1,024 1970 Intel ? ?
1702 Erasable PROM 2kb EPROM ? 1971 Intel ? ?
? 8 Mb DRAM ?8,388,608 January 6, 1984 (1986) Hitachi ? ?
?[36][37] 64 Mb DRAM ?67,108,864 1994 NEC, Samsung 320 nm ?
?[38][39] 256 Mb DRAM ?268,435,456 June 12, 1995 IBM, SIEMENS AG, Toshiba Corp. 250 nm 286 mm²
?[40] 1 Gb DRAM ?1,073,741,824 January 9, 1995 (2001) Hitachi ? ?
? 64 Gb DRAM ?68,719,476,736 2007(9)? ? ? ?
?[41] 128 Gb DRAM ?137,438,953,472 July 5, 2012 Samsung 30 nm ?


Parallel systems[edit]

Historically, each processing element in earlier parallel systems—like all CPUs of that time—was a serial computer built out of multiple chips. As transistor counts per chip increases, each processing element could be built out of fewer chips, and then later each multi-core processor chip could contain more processing elements.[42]

Goodyear MPP: (1983?) 8 pixel processors per chip, 3,000 to 8,000 transistors per chip.[42]

Brunel University Scape (single-chip array-processing element): (1983) 256 pixel processors per chip, 120,000 to 140,000 transistors per chip.[42]

Cell Broadband Engine: (2006) 9 cores per chip, 234 million transistors per chip.[43]

References[edit]

  1. ^ "The MOS 6502 and the Best Layout Guy in the World". swtch.com. Retrieved 2014-08-09. 
  2. ^ Microprocessors: 1971 to 1976 Christiansen
  3. ^ "Microprocessors 1976 to 1981". weber.edu. Retrieved 2014-08-09. 
  4. ^ a b The history of the ARM CPU[dead link]
  5. ^ "The Harris RTX 2000 Microcontroller - Tom Hand, Harris Semiconductor" (PDF). mpeforth.com. Retrieved 2014-08-09. 
  6. ^ "Forth chips list". UltraTechnology. 2001-03-15. Retrieved 2014-08-09. 
  7. ^ "Stack Computers - online free book, part 4.4 ARCHITECTURE OF THE NOVIX NC4016". CMU.edu. Retrieved 2014-08-09. 
  8. ^ "The CPU shack museum". CPUshack.com. 2005-05-15. Retrieved 2014-08-09. 
  9. ^ "ARM7 Statistics". Poppyfields.net. 1994-05-27. Retrieved 2014-08-09. 
  10. ^ "PC Guide Intel Pentium Pro ("P6")". PCGuide.com. 2001-04-17. Retrieved 2014-08-09. 
  11. ^ a b Bert Toepelt (2009-01-08). "AMD Phenom II X4: 45nm Benchmarked - The Phenom II And AMD's Dragon Platform". TomsHardware.com. Retrieved 2014-08-09. 
  12. ^ "ARM (Advanced RISC Machines) Processors". EngineersGarage.com. Retrieved 2014-08-09. 
  13. ^ Stokes, Jon (2010-02-10). "Sun's 1 billion-transistor, 16-core Niagara 3 processor". ArsTechnica.com. Retrieved 2014-08-09. 
  14. ^ "Intel's Atom Architecture: The Journey Begins". AnandTech. Retrieved 4 April 2010. 
  15. ^ "IBM to Ship World's Fastest Microprocessor". IBM. 2010-09-01. Retrieved 2014-08-09. 
  16. ^ "PRESS KIT - Dual-Core Intel Itanium Processor". Intel. Retrieved 2014-08-09. 
  17. ^ "Itanium Tukwila." AFP. February 5, 2008. Retrieved on February 5, 2008.
  18. ^ Chris Angelini (2011-11-14). "Intel Core i7-3960X Review: Sandy Bridge-E And X79 Express". TomsHardware.com. Retrieved 2014-08-09. 
  19. ^ "Intel Previews Intel Xeon 'Nehalem-EX' Processor." May 26, 2009. Retrieved on May 28, 2009.
  20. ^ "Intel Readying 15-core Xeon E7 v2". AnandTech. Retrieved 2014-08-09. 
  21. ^ "The Radeon HD 4850 & 4870: AMD Wins at $199 and $299". AnandTech.com. Retrieved 2014-08-09. 
  22. ^ "NVIDIA's 1.4 Billion Transistor GPU: GT200 Arrives as the GeForce GTX 280 & 260". AnandTech.com. Retrieved 2014-08-09. 
  23. ^ "Radeon 5870 specifications". AMD. Retrieved 2014-08-09. 
  24. ^ a b Glaskowsky, Peter. "ATI and Nvidia face off-obliquely". CNET. Retrieved 2014-08-09. 
  25. ^ http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
  26. ^ Don Woligroski (2011-12-22). "AMD Radeon HD 7970". TomsHardware.com. Retrieved 2014-08-09. 
  27. ^ http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
  28. ^ "Taiwan Company UMC Delivers 65nm FPGAs to Xilinx." SDA-ASIA Thursday, 9 November 2006.
  29. ^ ""Altera's new 40nm FPGAs - 2.5 billion transistors!". pldesignline.com. 
  30. ^ "Altera unveils 28-nm Stratix V FPGA family". April 20, 2010. Retrieved April 20, 2010. 
  31. ^ "Xilinx Announces world’s highest capacity FPGA." October 25, 2011. Retrieved on October 25, 2011.
  32. ^ "http://www.xilinx.com/publications/archives/xcell/Xcell86.pdf" May, 2014. Retrieved on June 3, 2014.
  33. ^ Jan M. Rabaey, Digital Integrated Circuits, Fall 2001: Course Notes, Chapter 6: Designing Combinatorial Logic Gates in CMOS, retrieved 27 October 2012.
  34. ^ [www.intel.com/Assets/PDF/General/35yrs.pdf Intel: 35 Years of Innovation (1968–2003)] Intel, 2003
  35. ^ The DRAM memory of Robert Dennard history-computer.com
  36. ^ NEC to build 64-Mbit DRAM line in U.S. (NEC Corp.; dynamic random access memory) Highbeam Business, October 24, 1994
  37. ^ NEC, Samsung sampling 64-Mbit DRAMs Highbeam Business, April 17, 1995
  38. ^ Alliance unwraps 256-Mbit DRAM. (IBM Corp, Toshiba Corp, Siemens AG) Highbeam Business, June 12, 1995
  39. ^ International chip trio delivers memory jump. (Siemens AG, IBM Corp. and Toshiba Corp. plan to develop a 256-Mbit dynamic random access memory chip)(Tech Trends)(Brief Article) Highbeam Business, July 3, 1995
  40. ^ Breaking the gigabit barrier, DRAMs at ISSCC portend major system-design impact. (dynamic random access memory; International Solid-State Circuits Conference; Hitachi Ltd. and NEC Corp. research and development) Highbeam Business, January 9, 1995
  41. ^ Samsung announces 16GB DDR4 DIMM to be released in 2014 TweakTown, July 5, 2012
  42. ^ a b c "Image processor handles 256 pixels simultaneously" by Kevin Smith "Electronics" magazine 1983 Aug 11
  43. ^ "Cell chip: Hit or hype?" by Michael Kanellos 2005

External links[edit]