# Triapeirogonal tiling

Triapeirogonal tiling

Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex figure 3.∞.3.∞
Schläfli symbol r{∞,3}
Wythoff symbol 2 | ∞ 3
Coxeter diagram
Symmetry group [∞,3], (*∞32)
Dual Order-3-infinite rhombille tiling
Properties Vertex-transitive edge-transitive

In geometry, the triapeirogonal tiling (or trigonal-horocyclic tiling) is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,3}.

## Related polyhedra and tiling

This hyperbolic tiling is topologically related as a part of sequence of uniform quasiregular polyhedra with vertex configurations (3.n.3.n), and [n,3] Coxeter group symmetry.

Dimensional family of quasiregular polyhedra and tilings: 3.n.3.n
Symmetry
*n32
[n,3]
Spherical Euclidean Compact hyperbolic Paracompact Noncompact
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
p6m
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]

[iπ/λ,3]
Quasiregular
figures
configuration

3.3.3.3

3.4.3.4

3.5.3.5

3.6.3.6

3.7.3.7

3.8.3.8

3.∞.3.∞
3.∞.3.∞
Coxeter diagram
Dual
(rhombic)
figures
configuration

V3.3.3.3

V3.4.3.4

V3.5.3.5

V3.6.3.6

V3.7.3.7

V3.8.3.8

V3.∞.3.∞
Coxeter diagram
Paracompact hyperbolic uniform tilings in [∞,3] family
Symmetry: [∞,3], (*∞32) [∞,3]+
(∞32)
[1+,∞,3]
(*∞33)
[∞,3+]
(3*∞)

=

=

=
=
or
=
or

=
{∞,3} t{∞,3} r{∞,3} t{3,∞} {3,∞} rr{∞,3} tr{∞,3} sr{∞,3} h{∞,3} h2{∞,3} s{3,∞}
Uniform duals
V∞3 V3.∞.∞ V(3.∞)2 V6.6.∞ V3 V4.3.4.∞ V4.6.∞ V3.3.3.3.∞ V(3.∞)3 V3.3.3.3.3.∞