Triapeirogonal tiling

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Triapeirogonal tiling
Triapeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex figure 3.∞.3.∞
Schläfli symbol r{∞,3}
Wythoff symbol 2 | ∞ 3
Coxeter diagram CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png
Symmetry group [∞,3], (*∞32)
Dual Order-3-infinite rhombille tiling
Properties Vertex-transitive edge-transitive

In geometry, the triapeirogonal tiling (or trigonal-horocyclic tiling) is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,3}.

Related polyhedra and tiling[edit]

This hyperbolic tiling is topologically related as a part of sequence of uniform quasiregular polyhedra with vertex configurations (3.n.3.n), and [n,3] Coxeter group symmetry.

Dimensional family of quasiregular polyhedra and tilings: 3.n.3.n
Symmetry
*n32
[n,3]
Spherical Euclidean Compact hyperbolic Paracompact Noncompact
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
p6m
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
 
[iπ/λ,3]
Quasiregular
figures
configuration
Uniform tiling 332-t1-1-.png
3.3.3.3
Uniform tiling 432-t1.png
3.4.3.4
Uniform tiling 532-t1.png
3.5.3.5
Uniform tiling 63-t1.png
3.6.3.6
Uniform tiling 73-t1.png
3.7.3.7
Uniform tiling 83-t1.png
3.8.3.8
H2 tiling 23i-2.png
3.∞.3.∞
3.∞.3.∞
Coxeter diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel ultra.pngCDel node 1.pngCDel 3.pngCDel node.png
Dual
(rhombic)
figures
configuration
Hexahedron.svg
V3.3.3.3
Rhombicdodecahedron.jpg
V3.4.3.4
Rhombictriacontahedron.svg
V3.5.3.5
Rhombic star tiling.png
V3.6.3.6
Order73 qreg rhombic til.png
V3.7.3.7
Uniform dual tiling 433-t01-yellow.png
V3.8.3.8
Ord3infin qreg rhombic til.png
V3.∞.3.∞
Coxeter diagram CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel ultra.pngCDel node f1.pngCDel 3.pngCDel node.png
Paracompact hyperbolic uniform tilings in [∞,3] family
Symmetry: [∞,3], (*∞32) [∞,3]+
(∞32)
[1+,∞,3]
(*∞33)
[∞,3+]
(3*∞)
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel labelinfin.pngCDel branch.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png =
CDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node.png or CDel labelinfin.pngCDel branch 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png or CDel labelinfin.pngCDel branch 01rd.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
= CDel labelinfin.pngCDel branch hh.pngCDel split2.pngCDel node h.png
H2 tiling 23i-1.png H2 tiling 23i-3.png H2 tiling 23i-2.png H2 tiling 23i-6.png H2 tiling 23i-4.png H2 tiling 23i-5.png H2 tiling 23i-7.png Uniform tiling i32-snub.png H2 tiling 33i-1.png
{∞,3} t{∞,3} r{∞,3} t{3,∞} {3,∞} rr{∞,3} tr{∞,3} sr{∞,3} h{∞,3} h2{∞,3} s{3,∞}
Uniform duals
CDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.png
H2 tiling 23i-4.png Ord-infin triakis triang til.png Ord3infin qreg rhombic til.png H2checkers 33i.png H2 tiling 23i-1.png Deltoidal triapeirogonal til.png H2checkers 23i.png Order-3-infinite floret pentagonal tiling.png Alternate order-3 apeirogonal tiling.png
V∞3 V3.∞.∞ V(3.∞)2 V6.6.∞ V3 V4.3.4.∞ V4.6.∞ V3.3.3.3.∞ V(3.∞)3 V3.3.3.3.3.∞

See also[edit]

References[edit]

External links[edit]