Tributyltin

From Wikipedia, the free encyclopedia
Jump to: navigation, search
tributyltin hydride model

Tributyltin (TBT) is jargon for organotin compounds that contain the (C4H9)3Sn group, such as tributyltin hydride or tributyltin oxide.[1] For 40 years, TBT was used as a biocide in anti-fouling paint, commonly known as bottom paint. Antifouling paint improves ship performance and durability, because it prevents or slows the growth of organisms that attach to the hull. Although TBT anti-fouling paint is the most effective, TBT-derived leachates are highly toxic for other marine organisms at all points of the food chain, including mammals. It is particularly dangerous because it impacts development, which has led to collapse of whole populations of organisms.[2]

Chemical properties[edit]

TBT compounds are organotin compounds, with 3 butyl groups covalently bonded a tetrahedral tin(IV) centre.[3] The general formula for these compounds is (n-C4H9)3Sn-X. The X group is typically an electronegative "leaving group" such as chloride or carboxylate.. When introduced into a marine or aquatic environment, TBT adheres to bed sediments because of its high specific gravity and low solubility. However, the adsorption of TBT to sediments is reversible, and depends on pH. Studies have shown that 95% of TBT can be released from the sediments back into the aquatic environment. This release makes it difficult to quantify the amount of TBT in an environment, since its concentration in the water is not representative of its availability.[1]

In the chemical laboratory, tributyltin hydride generated by the action of lithium aluminium hydride on tributyltin chloride is used to replace halogens in organic compounds for hydrogen.

Uses[edit]

Because TBT is the most effective anti-fouling agent discovered, it was frequently used in anti-fouling paint throughout the globe. Its inexpensive cost has been a major factor when resisting complete prohibition, compared to previous copper formulas.[4]

The antifouling properties of TBT compounds were discovered in the 1950s in the Netherlands by van der Kerk and coworkers. The function of the biocide in the anti-fouling paint is to prevent the settling of organisms on the hull and to poison the organisms that do.[5] It was found to that TBT is an effective biocide, but wrongly deemed safe enough to not cause damage to the environment. By the mid 1960s it became the most popular anti-fouling paint worldwide.[2] TBT was mixed into paints to extend the life of antifouling coatings, and ships were able to continue operations for a longer time frame. The paints ensured fuel efficiency and delayed costly ship repairs. However, the TBT used on the ship hulls was found to leach into, and severely damage, the marine, brackish and freshwater environment.[6]

Toxicity[edit]

The effects of antifouling paint go beyond the organisms that it is meant to kill. By poisoning barnacles, algae, and other organisms at the bottom of the food chain TBT is biomagnified up the marine predators' food net. It has been shown to have a harmful effects on many layers of the ecosystem, affecting invertebrates and vertebrates, including humans. Toxic effects in some species occur at 1 nano-gram per liter of water.[7]

Bioaccumulation[edit]

Even with its ban, TBT still presents a danger to the environment. One of the most problematic aspects of TBT is its accumulation in sediments and its long half life of about 2 years. TBT often bonds to suspended material and sediments to the bottom, where it can remain and be released, for up to 30 years.[8] Additionally, TBT can be introduced into non-aquatic or marine ecosystems because dissolved TBT can evaporate into the air and be dispersed by rain.[6]

Invertebrates[edit]

TBT has been shown to impact invertebrate development. One of the most studied organisms are the stenoglossan gastropods, a marine shelled snail. TBT disrupts their endocrine system by inhibiting Cytochrome P450 molecule. Among its myriad functions, P450 converts androgen, which have male hormone properties to oestrogen, which have female hormone properties. This inhibition leads to masculinization in females, because the androgen levels are higher than normal. Since less fertile females are available for mating, the population begins to decline and seriously impacts the balance of the ecosystem.[7]

Chironomus riparius has been used as a model invertebrate to test the effects of TBT on development and reproduction at sublethal concentrations found in marine environments. It was found that only 0.05 ng ml− 1 range is enough to have developmental effects on their larvae, and 10-100 ng l−1 was enough to seriously offset the female to male ratio in the population. At 10 ng l−1 females were at 55.6% of the population and 85.7% at 100 ng l− 1. These results are interesting because unlike the masculinization of the stengoglassan gastropods, this experiment shows feminization.[6]

Vertebrates[edit]

Vertebrates become effected by the waters contamined with TBT as well as by consuming organisms that have already been poisoned. Oryzias latipes, commonly called Japanese rice fish, has been used as a model vertebrate organism to test for effects of TBT at developmental stages of the embryo. It was observed that developmental rate was slowed by TBT in a concentration-related manner and that tail abnormalities occurred.[7]

Illustrating the infiltration of TBT in the food chain, one study showed that most samples of skipjack tuna tested positive for presence of TBT. Tuna from waters around developing Asian nations had particularly high levels of TBT. Regulation of TBT is not enforced in Asia as rigorously as in Europe or US.[9]

Studies have shown that TBT is detrimental to the immune system. Research shows that TBT reduces resistance to infection in fish which live on the seabed and are exposed to high levels of TBT. These areas tend to have silty sediment like harbours and estuaries.[4]

TBT compounds have been described to interfere with glucocorticoid metabolism in the liver, by inhibiting the activity of the enzyme 11beta-hydroxysteroiddehydrogenase type 2, which converts cortisol to cortisone.[6]

Mammals[edit]

The main way that mammals are exposed to TBT, especially humans, is through the diet. Its effects are more difficult to study, but some correlations have been established.

TBT has been shown to lead to immunosuppression in mammals such as sea-otters and dolphins. Studies have shown that wild, dead sea otters (Enhydra lutris) and stranded bottlenose dolphins can have extremely high levels of tributyltin in their livers.[10] In addition, it was found that otters dying of infectious causes tend to have higher levels of tissue butyltins than those dying of trauma or other causes.[11] TBT has also been blamed by hearing experts for causing hearing loss in mammalian top predators such as toothed whales. Because hearing is important for mating and predetation in these animals, long term consequences could be a drastic.[12][13]

In humans, organotin compounds have been detected both in blood and the liver.[1] Studies have linked Tributyltin to developmental abnormalities and obesity. There are studies indicating that it stimulates the endocrine system by activating retinoid X receptor. (RXRS).[14]

Regulation[edit]

TBT compounds are banned and are included in the Rotterdam Convention[15] and have been banned by the International Convention on the Control of Harmful Anti-fouling Systems on Ships of the International Maritime Organization.[4]

Bans on TBT on boats less than 25 metres long first started in the 1980s. In 1990, the Marine Environment Protection Committee adopted Resolution MEPC 46(30), which recommended that the Government eliminate the use of TBT-containing antifouling paints on smaller vessels. This resolution was intended to be a temporary restriction until the International Maritime Organization could implement a complete ban of TBT anti-fouling agents for ships. Several countries followed with a ban of use, and in 1997 Japan banned the production of TBT-based anti-fouling paints.[4]

The use of organotin compounds acting as biocide in anti-fouling paint was completely banned in 2008 by the International Convention on the Control of Harmful Anti-fouling Systems on Ships of the International Maritime Organization.[4] It states that ships cannot bear organotin compounds on their hulls or external parts or surfaces unless there is a coating that forms a barrier so that organotin compounds cannot leach out. This measure helps reduce exposure by allowing recovery to occur. Despite the ban, TBT will most likely be present in the water column and sediment for up to twenty years because of its long half-life.[1]

Violations of the ban on TBT[edit]

Even though banned, TBT anti-fouling paints ae still being used in countries with poor regulation enforcement, such as countries in the Caribbean.[16] TBT can remain in the ecosystem for up to 30 years.[8]

See also[edit]

References[edit]

  1. ^ a b c d Antizar-Ladislao, Blanca (Feb 2008). "Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review". Environmental International 34 (2): 292–308. doi:10.1016/j.envint.2007.09.005. PMID 17959247. Retrieved Mar 12, 2014. 
  2. ^ a b Konstantinou, Ioannis (Feb 22, 2006). Antifouling Paint Biocides. Springer. p. 1. 
  3. ^ Davies, Alwyn George. (2004) Organotin Chemistry, 2nd Edition Weinheim: Wiley-VCH. ISBN 978-3-527-31023-4
  4. ^ a b c d e "Focus on IMO - Anti-fouling systems". International Maritime Organisation. 
  5. ^ Walmsley, Simon. "Tributyltin pollution on a global scale. An overview of relevant and recent research: impacts and issues.". WWF. Retrieved 4/2/14. 
  6. ^ a b c d Mora, ed. by Stephen J. De (1996). Tributyltin : case study of an environmental contaminant (1. publ. ed.). Cambridge [u.a.]: Cambridge Univ. Press. ISBN 0521470463. 
  7. ^ a b c Walmsley, Simon. "Tributyltin pollution on a global scale. An overview of relevant and recent research: impacts and issues.". WWF UK. 
  8. ^ a b Champ, Michael (Sep 30, 1996). Organotin: Environmental Fate and Effects. Springer. p. 469. 
  9. ^ Down, Steve. "Tuna is attuned to tin". Ezine. Retrieved 2014-04-28. 
  10. ^ Murata S, Takahashi S, Agusa T, Thomas NJ, Kannan K, Tanabe S (April 2008). "Contamination status and accumulation profiles of organotins in sea otters (Enhydra lutris) found dead along the coasts of California, Washington, Alaska (USA), and Kamchatka (Russia)". Marine pollution bulletin 56 (4): 641–9. doi:10.1016/j.marpolbul.2008.01.019. PMID 18304586. 
  11. ^ Kannan et al. 1998. Butyltin residues in Southern sea otters (Enhydra lutris nereis) found dead along California coastal waters. Environ. Sci. Technol. 32:1169-1175
  12. ^ Matt Apuzzo (2005-01-28). "Whale Deafness Linked To Chemical". Associated Press via CBS News. Retrieved 2008-07-30. 
  13. ^ Santos-Sacchi Joseph, Song Lei, Zheng Jiefu, Nuttall Alfred L (2006-04-12). "Control of Mammalian Cochlear Amplification by Chloride Anions". Journal of Neuroscience 26 (15): 3992–3998. doi:10.1523/JNEUROSCI.4548-05.2006. PMID 16611815. 
  14. ^ Nakanishi, T (Oct 19, 2005). "Trialkyltin compounds bind retinoid X receptor to alter human placental endocrine functions.". Mol Endocrinol 19 (10): 2502–16. doi:10.1210/me.2004-0397. PMID 15941851. Retrieved 2014-04-28. 
  15. ^ Secretariat for the Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade (1 February 2009). "Decision Guidance Document for Tributyltin Compounds". United Nations Environment Programme. Retrieved 2013-01-04. 
  16. ^ "Persistent Organic Pollutants (POPs) and Pesticides". The Caribbean Environment Programme. Retrieved 4/1/2014. 

External links[edit]