Trident laser

From Wikipedia, the free encyclopedia
Jump to: navigation, search
An aluminum foil irradiated by the Trident Laser (entering from the right), producing x-rays, hot electrons, and an ion beam, which cannot be seen directly. The plasma from the intense interaction is visible as the two cones jetting out in either direction from the target (center), expand into the vacuum. X-ray produced plasmas on the surrounding surfaces create glowing structures. The green light illuminating the scene is from the second harmonic light (527 nm) produced from the short-pulse beam's fundamental wavelength (1053 nm) at the target/plasma/laser interface a few 10s of micrometres in front of the target.

The Trident Laser is a high power, sub-petawatt class, solid-state laser facility located at Los Alamos National Laboratory (LANL website), in Los Alamos, New Mexico, originally built in the late 1980s for Inertial confinement fusion (ICF) research by KMS Fusion, founded by Kip Siegel, in Ann Arbor, Michigan, it was later moved to Los Alamos in the early 1990s[1] to be used in ICF and materials research. The Trident Laser Facility has been opened up to external users via the Trident National User Program and potential users can now submit proposals for laser time.

The Trident Laser consists of three main laser chains (A,B, and C) of neodymium glass amplifiers (or Nd:glass), two are identical longpulse beams lines, A&B, and a third beamline, C, that can be operated either in longpulse or in chirped pulse amplification (CPA) shortpulse mode.[2] Longpulse beams A and B, are laser chains capable of delivering up to ~500 J at 1054 nm, which are frequency doubled to 527 nm and ~200 J depending on pulse duration; the pulse duration can be varied from 100 ps to 1 µs, and is a unique capability of any large laser in the US (and possibly the world). The third laser chain, beamline C, can produce up to ~200 J at 1054 nm, or can be frequency doubled to 527 nm at ~100 J in the longpulse mode with the same pulse duration variability as beams A and B; or can be use in the recently (June 2007) completed Trident enhancement configuration allowing the ~200 J beam to be compressed via CPA to ~600 fs and ~100 J, producing powers on the scale of a quarter petawatt(~200 TW) with a host of laser and plasma diagnostics.[3] A 100 mJ 500 fs probe beamline is also available.

The 200TW shortpulse ultra high-intensity laser system is currently a world record holder in ion acceleration energy,producing protons at 58.5 MeV from a flat-foil,[4] beating the record of the NOVA Petawatt laser back in 1999;[5] and 67.5 MeV protons from micro-cone targets.[6][7] Trident delivers Petawatt performance at a fifth of the power. The 200TW or C beam is capable of focusing down to less than 10 micrometers in diameter to reach laser field intensities (irradiance) of ~2x1020 W/cm², producing protons over 50 MeV[8] as well as high quality, high energy xrays.[9] The interaction can be diagnosed with a Backscatter Focal Diagnostics [10] similar to a Full Aperture Back-scatter (FABS)[11] diagnostic at the National Ignition Facility. A new front-end for the laser employs a 2nd order cleaning technique, dubbed SPOPA (for Short-Pulse Optical Parametric Amplification) cleaning, which reduces the contrast to better than 10−9 ASE intensity ratio, making it the cleanest ultra high-intensity high-power laser in the world.[12]

The laser is currently being used for Fast Ignition ICF research, warm dense matter experiments, materials dynamics studies, and laser-matter interaction research, including particle acceleration, x-ray backlighting and laser-plasma instabilities (LPI).

For more information see the Trident User Facility Website: Trident User Facility, Los Alamos National Laboratory, see the references below and these articles using the laser:[13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33]

See also[edit]

References[edit]

  1. ^ Moncur, N. K.; Johnson, R. P.; Watt, R. G.; Gibson, R. B. (20 July 1995). "Trident: a versatile high-power Nd:glass laser facility for inertial confinement fusion experiments". Applied Optics 34 (21): 4274. Bibcode:1995ApOpt..34.4274M. doi:10.1364/AO.34.004274. 
  2. ^ Trident as an Ultrahigh Irradiance Laser, R.P Johnson et al., LA-UR-9541 (1995), Los Alamos National Laboratory
  3. ^ Batha, S. H.; Aragonez, R.; Archuleta, F. L.; Archuleta, T. N.; Benage, J. F.; Cobble, J. A.; Cowan, J. S.; Fatherley, V. E.; Flippo, K. A.; Gautier, D. C.; Gonzales, R. P.; Greenfield, S. R.; Hegelich, B. M.; Hurry, T. R.; Johnson, R. P.; Kline, J. L.; Letzring, S. A.; Loomis, E. N.; Lopez, F. E.; Luo, S. N.; Montgomery, D. S.; Oertel, J. A.; Paisley, D. L.; Reid, S. M.; Sanchez, P. G.; Seifter, A.; Shimada, T.; Workman, J. B. (1 January 2008). "TRIDENT high-energy-density facility experimental capabilities and diagnostics". Review of Scientific Instruments 79 (10): 10F305. Bibcode:2008RScI...79jF305B. doi:10.1063/1.2972020. 
  4. ^ Flippo, K. A.; Workman, J.; Gautier, D. C.; Letzring, S.; Johnson, R. P.; Shimada, T. (1 January 2008). "Scaling laws for energetic ions from the commissioning of the new Los Alamos National Laboratory 200 TW Trident laser". Review of Scientific Instruments 79 (10): 10E534. Bibcode:2008RScI...79jE534F. doi:10.1063/1.2987678. 
  5. ^ Snavely, R.; Key, M.; Hatchett, S.; Cowan, T.; Roth, M.; Phillips, T.; Stoyer, M.; Henry, E.; Sangster, T.; Singh, M.; Wilks, S.; MacKinnon, A.; Offenberger, A.; Pennington, D.; Yasuike, K.; Langdon, A.; Lasinski, B.; Johnson, J.; Perry, M.; Campbell, E. (1 October 2000). "Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids". Physical Review Letters 85 (14): 2945–2948. Bibcode:2000PhRvL..85.2945S. doi:10.1103/PhysRevLett.85.2945. 
  6. ^ Flippo, K. A.; d’Humières, E.; Gaillard, S. A.; Rassuchine, J.; Gautier, D. C.; Schollmeier, M.; Nürnberg, F.; Kline, J. L.; Adams, J.; Albright, B.; Bakeman, M.; Harres, K.; Johnson, R. P.; Korgan, G.; Letzring, S.; Malekos, S.; Renard-LeGalloudec, N.; Sentoku, Y.; Shimada, T.; Roth, M.; Cowan, T. E.; Fernández, J. C.; Hegelich, B. M. (1 January 2008). "Increased efficiency of short-pulse laser-generated proton beams from novel flat-top cone targets". Physics of Plasmas 15 (5): 056709. Bibcode:2008PhPl...15e6709F. doi:10.1063/1.2918125. 
  7. ^ Gaillard, S. A.; Kluge, T.; Flippo, K. A.; Bussmann, M.; Gall, B.; Lockard, T.; Geissel, M.; Offermann, D. T.; Schollmeier, M.; Sentoku, Y.; Cowan, T. E. (1 January 2011). "Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets". Physics of Plasmas 18 (5): 056710. Bibcode:2011PhPl...18e6710G. doi:10.1063/1.3575624. 
  8. ^ Flippo, K. A.; Workman, J.; Gautier, D. C.; Letzring, S.; Johnson, R. P.; Shimada, T. (1 January 2008). "Scaling laws for energetic ions from the commissioning of the new Los Alamos National Laboratory 200 TW Trident laser". Review of Scientific Instruments 79 (10): 10E534. Bibcode:2008RScI...79jE534F. doi:10.1063/1.2987678. 
  9. ^ Workman, J.; Cobble, J.; Flippo, K.; Gautier, D. C.; Letzring, S. (1 January 2008). "High-energy, high-resolution x-ray imaging on the Trident short-pulse laser facility". Review of Scientific Instruments 79 (10): 10E905. Bibcode:2008RScI...79jE905W. doi:10.1063/1.2965012. 
  10. ^ Gautier, D. C.; Flippo, K. A.; Letzring, S. A.; Shimada, J. Workman T.; Johnson, R. P.; Hurry, T. R.; Gaillard, S. A.; Hegelich, B. M. (1 January 2008). "A novel backscatter focus diagnostic for the TRIDENT 200 TW laser". Review of Scientific Instruments 79 (10): 10F547. Bibcode:2008RScI...79jF547G. doi:10.1063/1.2979881. 
  11. ^ Froula, D. H.; Bower, D.; Chrisp, M.; Grace, S.; Kamperschroer, J. H.; Kelleher, T. M.; Kirkwood, R. K.; MacGowan, B.; McCarville, T.; Sewall, N.; Shimamoto, F. Y.; Shiromizu, S. J.; Young, B.; Glenzer, S. H. (1 January 2004). "Full-aperture backscatter measurements on the National Ignition Facility". Review of Scientific Instruments 75 (10): 4168. Bibcode:2004RScI...75.4168F. doi:10.1063/1.1789592. 
  12. ^ Shah, Rahul C.; Johnson, Randall P.; Shimada, Tsutomu; Flippo, Kirk A.; Fernandez, Juan C.; Hegelich, B. M. (1 August 2009). "High-temporal contrast using low-gain optical parametric amplification". Optics Letters 34 (15): 2273. doi:10.1364/OL.34.002273. 
  13. ^ Schaeffer, D. B.; Everson, E. T.; Winske, D.; Constantin, C. G.; Bondarenko, A. S.; Morton, L. A.; Flippo, K. A.; Montgomery, D. S.; Gaillard, S. A.; Niemann, C. (1 January 2012). "Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston". Physics of Plasmas 19 (7): 070702. Bibcode:2012PhPl...19g0702S. doi:10.1063/1.4736846. 
  14. ^ Bartal, Teresa; Foord, Mark E.; Bellei, Claudio; Key, Michael H.; Flippo, Kirk A.; Gaillard, Sandrine A.; Offermann, Dustin T.; Patel, Pravesh K.; Jarrott, Leonard C.; Higginson, Drew P.; Roth, Markus; Otten, Anke; Kraus, Dominik; Stephens, Richard B.; McLean, Harry S.; Giraldez, Emilio M.; Wei, Mingsheng S.; Gautier, Donald C.; Beg, Farhat N. (4 December 2011). "Focusing of short-pulse high-intensity laser-accelerated proton beams". Nature Physics 8 (2): 139–142. Bibcode:2012NatPh...8..139B. doi:10.1038/NPHYS2153. 
  15. ^ Schaeffer, D B; Montgomery, D S; Bondarenko, A S; Morton, L A; Johnson, R P; Shimada, T; Constantin, C G; Everson, E T; Letzring, S A; Gaillard, S A; Flippo, K A; Glenzer, S H; Niemann, C (7 February 2012). "Thomson Scattering Measurements of Temperature and Density in a Low-Density, Laser-Driven Magnetized Plasma". Journal of Instrumentation 7 (02): P02002–P02002. Bibcode:2012JInst...7.2002S. doi:10.1088/1748-0221/7/02/P02002. 
  16. ^ Bartal, T.; Flippo, K. A.; Gaillard, S. A.; Offermann, D. T.; Foord, M. E.; Bellei, C.; Patel, P. K.; Key, M. H.; Stephens, R. B.; McLean, H. S.; Jarrott, L. C.; Beg, F. N. (1 November 2011). "Proton Focusing Characteristics Relevant to Fast Ignition". IEEE Transactions on Plasma Science 39 (11): 2818–2819. Bibcode:2011ITPS...39.2818B. doi:10.1109/TPS.2011.2155682. 
  17. ^ Flippo, Kirk A.; Gaillard, Sandrine A.; Cowan, Joseph S.; Gautier, D. Cort; Mucino, J. Eduardo; Lowenstern, Mariano E. (1 November 2011). "Overcritical to Underdense Plasma in Under 1 μm: 150 TW Laser-Thin-Target Interactions for Particle Acceleration". IEEE Transactions on Plasma Science 39 (11): 2428–2429. Bibcode:2011ITPS...39.2428F. doi:10.1109/TPS.2011.2163426. 
  18. ^ Niemann, Christoph; Bondarenko, Anton S.; Constantin, Carmen G.; Everson, Erik T.; Flippo, Kirk A.; Gaillard, Sandrine A.; Johnson, Randall P.; Letzring, Samuel A.; Montgomery, David S.; Morton, Lucas A.; Schaeffer, Derek B.; Shimada, Tsutomu; Winske, Dan (1 November 2011). "Collisionless Shocks in a Large Magnetized Laser-Plasma Plume". IEEE Transactions on Plasma Science 39 (11): 2406–2407. Bibcode:2011ITPS...39.2406N. doi:10.1109/TPS.2011.2162007. 
  19. ^ Schaeffer, D B; Montgomery, D S; Bondarenko, A S; Morton, L A; Johnson, R P; Shimada, T; Constantin, C G; Everson, E T; Letzring, S A; Gaillard, S A; Flippo, K A; Glenzer, S H; Niemann, C (7 February 2012). "Thomson Scattering Measurements of Temperature and Density in a Low-Density, Laser-Driven Magnetized Plasma". Journal of Instrumentation 7 (02): P02002–P02002. Bibcode:2012JInst...7.2002S. doi:10.1088/1748-0221/7/02/P02002. 
  20. ^ Offermann, D. T.; Flippo, K. A.; Cobble, J.; Schmitt, M. J.; Gaillard, S. A.; Bartal, T.; Rose, D. V.; Welch, D. R.; Geissel, M.; Schollmeier, M. (1 January 2011). "Characterization and focusing of light ion beams generated by ultra-intensely irradiated thin foils at the kilojoule scale". Physics of Plasmas 18 (5): 056713. Bibcode:2011PhPl...18e6713O. doi:10.1063/1.3589476. 
  21. ^ Workman, J.; Cobble, J.; Flippo, K.; Gautier, D. C.; Montgomery, D. S.; Offermann, D. T. (1 January 2010). "Phase-contrast imaging using ultrafast x-rays in laser-shocked materials". Review of Scientific Instruments 81 (10): 10E520. Bibcode:2010RScI...81jE520W. doi:10.1063/1.3485109. 
  22. ^ Offermann, D T; Flippo, K A; Gaillard, S A; Gautier, D C; Letzring, S; Cobble, J C; Wurden, G; Johnson, R P; Shimada, T; Montgomery, D S; Gonzales, R P; Hurry, T; Archuleta, F; Schmitt, M J; Reid, S-M; Bartal, T; Wei, M S; Higginson, D P; Beg, F N; Geissel, M; Schollmeier, M (1 August 2010). "Carbon ion beam focusing using laser irradiated, heated diamond hemispherical shells". Journal of Physics: Conference Series 244 (2): 022053. Bibcode:2010JPhCS.244b2053O. doi:10.1088/1742-6596/244/2/022053. 
  23. ^ Roth, M; Alber, I; Bagnoud, V; Brown, C R D; Clarke, R; Daido, H; Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C; Geissel, M; Glenzer, S; Gregori, G; Günther, M; Harres, K; Heathcote, R; Kritcher, A; Kugland, N; LePape, S; Li, B; Makita, M; Mithen, J; Niemann, C; Nürnberg, F; Offermann, D; Otten, A; Pelka, A; Riley, D; Schaumann, G; Schollmeier, M; Schütrumpf, J; Tampo, M; Tauschwitz, A; Tauschwitz, An (1 December 2009). "Proton acceleration experiments and warm dense matter research using high power lasers". Plasma Physics and Controlled Fusion 51 (12): 124039. Bibcode:2009PPCF...51l4039R. doi:10.1088/0741-3335/51/12/124039. 
  24. ^ Henig, A.; Kiefer, D.; Markey, K.; Gautier, D.; Flippo, K.; Letzring, S.; Johnson, R.; Shimada, T.; Yin, L.; Albright, B.; Bowers, K.; Fernández, J.; Rykovanov, S.; Wu, H.-C.; Zepf, M.; Jung, D.; Liechtenstein, V.; Schreiber, J.; Habs, D.; Hegelich, B. (1 July 2009). "Enhanced Laser-Driven Ion Acceleration in the Relativistic Transparency Regime". Physical Review Letters 103 (4). Bibcode:2009PhRvL.103d5002H. doi:10.1103/PhysRevLett.103.045002. 
  25. ^ Kline, J.L.; Montgomery, D.S.; Rousseaux, C.; Baton, S.D.; Tassin, V.; Hardin, R.A.; Flippo, K.A.; Johnson, R.P.; Shimada, T.; Yin, L.; Albright, B.J.; Rose, H.A.; Amiranoff, F. (18 February 2009). "Investigation of stimulated Raman scattering using a short-pulse diffraction limited laser beam near the instability threshold". Laser and Particle Beams 27 (01): 185. Bibcode:2009LPB....27..185K. doi:10.1017/S0263034609000251. 
  26. ^ Kline, J. L.; Montgomery, D. S.; Flippo, K. A.; Johnson, R. P.; Rose, H. A.; Shimada, T.; Williams, E. A. (1 January 2008). "Using a short-pulse diffraction-limited laser beam to probe filamentation of a random phase plate smoothed beam". Review of Scientific Instruments 79 (10): 10F551. Bibcode:2008RScI...79jF551K. doi:10.1063/1.2955927. 
  27. ^ Schollmeier, M.; Becker, S.; Geißel, M.; Flippo, K.; Blažević, A.; Gaillard, S.; Gautier, D.; Grüner, F.; Harres, K.; Kimmel, M.; Nürnberg, F.; Rambo, P.; Schramm, U.; Schreiber, J.; Schütrumpf, J.; Schwarz, J.; Tahir, N.; Atherton, B.; Habs, D.; Hegelich, B.; Roth, M. (1 August 2008). "Controlled Transport and Focusing of Laser-Accelerated Protons with Miniature Magnetic Devices". Physical Review Letters 101 (5). Bibcode:2008PhRvL.101e5004S. doi:10.1103/PhysRevLett.101.055004. 
  28. ^ Schollmeier, M.; Harres, K.; Nürnberg, F.; Blažević, A.; Audebert, P.; Brambrink, E.; Fernández, J. C.; Flippo, K. A.; Gautier, D. C.; Geißel, M.; Hegelich, B. M.; Schreiber, J.; Roth, M. (1 January 2008). "Laser beam-profile impression and target thickness impact on laser-accelerated protons". Physics of Plasmas 15 (5): 053101. Bibcode:2008PhPl...15e3101S. doi:10.1063/1.2912451. 
  29. ^ Kline, J. L.; Shimada, T.; Johnson, R. P.; Montgomery, D. S.; Hegelich, B. M.; Esquibel, D. M.; Flippo, K. A.; Gonzales, R. P.; Hurry, T. R.; Reid, S. L. (1 January 2007). "Short pulse laser train for laser plasma interaction experiments". Review of Scientific Instruments 78 (8): 083501. Bibcode:2007RScI...78h3501K. doi:10.1063/1.2760687. 
  30. ^ Schollmeier, Marius; Roth, M.; Blazevic, A.; Brambrink, E.; Cobble, J.A.; Fernandez, J.C.; Flippo, K.A.; Gautier, D.C.; Habs, D.; Harres, K.; Hegelich, B.M.; Heßling, T.; Hoffmann, D.H.H.; Letzring, S.; Nürnberg, F.; Schaumann, G.; Schreiber, J.; Witte, K. (1 July 2007). "Laser ion acceleration with micro-grooved targets". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 577 (1-2): 186–190. Bibcode:2007NIMPA.577..186S. doi:10.1016/j.nima.2007.02.052. 
  31. ^ Yin, L.; Albright, B. J.; Hegelich, B. M.; Bowers, K. J.; Flippo, K. A.; Kwan, T. J. T.; Fernández, J. C. (1 January 2007). "Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets". Physics of Plasmas 14 (5): 056706. Bibcode:2007PhPl...14e6706Y. doi:10.1063/1.2436857. 
  32. ^ Hegelich, B. M.; Albright, B. J.; Cobble, J.; Flippo, K.; Letzring, S.; Paffett, M.; Ruhl, H.; Schreiber, J.; Schulze, R. K.; Fernández, J. C. (26 January 2006). "Laser acceleration of quasi-monoenergetic MeV ion beams". Nature 439 (7075): 441–444. Bibcode:2006Natur.439..441H. doi:10.1038/nature04400. 
  33. ^ FERNÁNDEZ, JUAN C.; HEGELICH, B. MANUEL; COBBLE, JAMES A.; FLIPPO, KIRK A.; LETZRING, SAMUEL A.; JOHNSON, RANDALL P.; GAUTIER, D. CORT; SHIMADA, TSUTOMU; KYRALA, GEORGE A.; WANG, YONGQIANG; WETTELAND, CHRIS J.; SCHREIBER, JÖRG (30 August 2005). "Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas". Laser and Particle Beams 23 (03). Bibcode:2005LPB....23..267F. doi:10.1017/S0263034605050287.