Tropical ecology

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Tropical ecology is the study of the relationships between the biotic and abiotic components of the tropics, or the area of the Earth that lies between the Tropic of Cancer and the Tropic of Capricorn (23.4378° N and 23.4378° S, respectively). The tropical climate experiences hot, humid weather and rainfall year round. While many might associate the region solely with the rainforests, the tropics are home to a wide variety of ecosystems that boast a great wealth of biodiversity, from exotic animal species to seldom-found flora. Tropical ecology began with the work of early English naturalists and eventually saw the establishment of research stations throughout the tropics devoted to exploring and documenting these exotic landscapes. The burgeoning ecological study of the tropics has led to increased conservation education and programs devoted to the climate. This climatic zone offers numerous advantages to ecologists conducting a wide array of studies, from rich biodiversity to vast lands untainted by man.

Origins[edit]

The roots of tropical ecology can be traced to the voyages of European naturalists in the late 19th and early 20th centuries. Men who might be considered early ecologists such as Alexander Von Humboldt, Thomas Belt, Henry Walter Bates, and even Charles Darwin sailed to tropical locations and wrote extensively about the exotic flora and fauna they encountered. While many naturalists were simply drawn to the exotic nature of the tropics, some historians argue that the naturalists conducted their studies on tropical islands in order to increase the likelihood that their work might bring about social and political change.[1] In any case, these early explorations and the subsequent writings that came from them comprise much of the early work of Tropical Ecology and served to spark further interest in the tropics among other naturalists. Henry Walter Bates, for example, wrote extensively about a species of toucan he encountered while traveling along the Amazon River. Bates discovered that if one toucan called out, the other surrounding toucans would mimic his or her call, and the forest would quickly fill with the sounds of toucans; this was one of the first documented studies of animal mimicry.[2] Alexander Von Humboldt voyaged throughout South America, from Venezuela through the Andes Mountains. There, Humboldt and his associate, Aimé Bonpland, stumbled upon an interesting ecological concept. As the pair traveled from the base of the mountains to the peak, they noticed that the species of plants and animals would change according to which climatic zone they were in relative to their elevation. This simple discovery aided the theorization of the life zone concept, which would eventually give way to the popularization of the concept of ecosystems.[2] Another voyager, William Beebe, researched many species of birds in tropical locations and published a large gamut of academic works on his findings that greatly shaped the field of ornithology. According to his biographer Carol Grant Gould, "The effects William Beebe had on science... are enormous and lasting. He made an effective transition between the Victorian natural historian, content to collect and classify the natural world, and the modern experimental biologist."[3] The work of these early pioneers not only lead to an increased interest in the burgeoning field of tropical ecology, but also had far reaching implications for scientific study on the whole.

Conservation and management[edit]

B02 Ecuador 010 - Plants of the rainforest, February 1985

The tropics receive a lot of attention when it comes to conservation and management due to increased public awareness of the significance of tropical ecosystems and the delicacy with which they much be treated. The rainforests are subjects of heightened attention due to the excessive deforestation and logging that occurs in those ecosystems. In the 1980s, the United Nations Food and Agriculture Organization conducted a study that concluded that 15.4 million hectares (100 acres) of tropical forest was lost per year. In addition, 5.6 million hectares were logged each year.[4] This landmark study sparked widespread interest in the tropical ecosystem, and a great number of non-profits and outspoken ecologists engaged in an extended fight to "save the rainforest" that continues today. This battle has manifested itself in a number of ways, one of which is the outcropping of biodiversity institutes in tropical locations dedicated to stopping the excessive deforestation of the landscape, one of the most notable of which was established in Costa Rica. The work of the Costa Rican National Biodiversity Institute (INBio) has served as a model for other biodiversity institutes. First, it must be noted that rainforests harbor the most alkaloid-producing plants of any biome; alkaloids are compounds that are crucial to the production of Western drugs.[5] Due to the abundance of these compounds, pharmaceutical companies all over the world look to the rainforests for new medicinal treatments. In the early 1990s, the heads of INBio signed a deal with the pharmaceutical behemoth Merck that called for cooperation between the two entities in discovering and exploring new natural treatments in the Costa Rican rainforests.[6] Ecologists, government officials, and corporations alike praised this decision as decisive progress in an ongoing struggle to work cooperatively in utilizing tropical biodiversity while ensuring the stability of tropical ecosystems.

Significance of ecology in the tropics[edit]

Vicuña Atacama, Chile

It is advantageous for ecologists and naturalists to study plants, animals, and ecosystems in the tropical climate for a number of reasons. For one, the tropics are home to a wide array of ecosystems, from rainforests to deserts. In that sense, the tropics are a great place for ecologists to conduct diverse studies without traveling too far from a research center. Secondly, the temperature in the tropics rarely hinders plant growth and activity; flora can be studied nearly year round, as cold weather never stunts plant activity. In addition to climatic reasons, the traditionally sparse population of the tropics has greatly aided research in the area, as the landscape is largely untainted by mankind and machinery. While this may not be the case so much as of late, the vast amounts of untapped land in the tropics still make for prime research territory. Finally, the tropics are valuable to ecologists because they are home to some of the oldest lands on Earth, including Chile's Atacama Desert and Australia's Peneplain. Thus, plant communities have been growing and evolving for millions of uninterrupted years, which makes for interesting study.[7] That being said, while it may be advantageous to study ecology in the tropics, this is not to say that it is without difficulty. The ecosystems native to the tropics and the biodiversity they boast are dwindling. Half of the species located in biodiversity hotspots are in danger of extinction, and many of the plants with potential medicinal uses are dying off.[8] In this sense, ecological study in the tropics is not as easily conducted as it once was; this is the reason why much of the modern ecological work in the field is aimed towards conservation and management as opposed to general research.

Notes[edit]

  1. ^ Grove, Richard (1995). Green Imperialism: Colonial Expansion, Tropical Island Edens and the Origins of Environmentalism, 1600-1860. Cambridge, England: Cambridge University Press. pp. 309–310. ISBN 0521565138. 
  2. ^ a b Kricher, John (2011). Tropical Ecology. Princeton, New Jersey: Princeton University Press. pp. 7–10. ISBN 978-0-691-11513-9. 
  3. ^ Davis, Jr., William (December 2005). "The Remarkable Life of William Beebe: Explorer and Naturalist". The Wilson Bulletin 117 (4): 421–422. doi:10.1676/0043-5643(2005)117[0421:ol]2.0.co;2. 
  4. ^ Del Lungo, Alberto (December 2001). "Forest Plantation Resources, FAO Data-Sets 1980, 1990, 1995 and 2000". Forest Plantations Thematic Papers 14: 36–40. 
  5. ^ Myers, Norman (1992). The Primary Source: Tropical Forests and Our Future. New York: W.W. Norton. ISBN 0393308286. 
  6. ^ Zebich-Knos, Michele (June 1997). "Preserving Biodiversity in Costa Rica: The Case of the Merck-INBio Agreement". The Journal of Environment and Development 6 (2): 180–186. doi:10.1177/107049659700600206. 
  7. ^ Richards, P.W. (July 1963). "What the Tropics Can Contribute to Ecology". Journal of Ecology 51 (2): 231–241. doi:10.2307/2257682. 
  8. ^ Bawa, Kamaljit; W. John Kress and Nalini M. Nadkarni (September 2004). "Beyond Paradise: Meeting the Challenges in Tropical Biology in the 21st Century". Biotropica 36 (3): 310. 

See also[edit]

External links[edit]