Trouble with Lichen

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Trouble with Lichen
TroubleWithLichen.jpg
First edition
Author John Wyndham
Cover artist Hugh Marshall
Country United Kingdom
Language English
Genre Science fiction novel
Publisher Michael Joseph
Publication date
1960
Pages 189
Preceded by The Outward Urge
Followed by Chocky

Trouble with Lichen (published 1960) is a science fiction novel by John Wyndham.

Plot summary[edit]

The plot concerns a young woman biochemist who discovers that a chemical extracted from an unusual strain of lichen (hence the title) can be used to retard the ageing process, enabling people to live to around 200–300 years. Wyndham speculates how society would deal with this prospect.

The two central characters are Diana Brackley and Francis Saxover, two biochemists who run parallel investigations into the properties of a specific species of lichen after Diana notices that a trace of the specimen prevents some milk turning sour.

She and Francis separately manage to extract from the lichen a new drug, dubbed Antigerone, which slows down the body's ageing process. While Francis uses it only on himself and his immediate family (without their knowledge), Diana founds a cosmetic spa, and builds up a clientele of some of the most powerful women in England, giving them low doses of Antigerone, preserving their beauty and youth. When Saxover finds out about the spas, he erroneously assumes that Diana's motive is profit. Diana's aim, however, is actually female empowerment, intending to gain the support of these influential women, believing that if Antigerone became publicly known, it would be reserved only for the men in power.

After a customer suffers an allergic reaction to one of Diana's products, the secret of the drug begins to emerge. Diana tries to cover up the real source of the drug, since the lichen is very rare and difficult to grow, but when it is finally discovered, she fakes her own death, in the hope of inspiring the women of Britain to fight for the rights she tried to secure for them.

Francis realizes that she may not really be dead, and tracks her down to a remote farm, where she has succeeded in growing a small amount of the lichen. Diana plans to rejoin the world under the guise of being her own sister, and continue the work she left off.

Parallel in later scientific developments[edit]

Biogerontologist Richard Faragher of the British Society for Research on Ageing has noted that there is a notable parallel between Antigerone and rapamycin, a polyketide drug produced by soil bacteria discovered on Easter Island.[1] Although originally developed as an antifungal medication and used clinically primarily as an immunosuppressive to prevent prevention of immune rejection of transplanted organs, rapamycin has recently been the subject of intense interest as a potential anti-aging drug. This new interest began with a 2009 study in which rapamycin increased the remaining lifespans of mice that were already in late middle age by between 28 and 38% as tallied from the initiation of treatment (amounting to a 9-14% increase in overall maximum lifespan).[2][3] This was the first unambiguous case of a drug increasing the maximum lifespan of a mammal, and suggests the possibility of an effective anti-aging treatment for humans that could be initiated when the recipients were already in middle age or older, as opposed to requiring a lifelong regimen beginning in youth.[2] Rapamycin has subsequently been shown to extend mouse lifespan in several separate experiments,[4][5] and is now being tested for this purpose in nonhuman primates (the marmoset monkey),[6] and with an ongoing attempt to organize a study in dogs.[7] Surprisingly, granted rapamycin's known immunosuppressive effects, a synthetic analog of rapamycin was recently found to "rejuvenate" immune function (as measured by immunological response to influenza vaccination) in elderly humans,[8] further fueling optimism for the potential of analogs of rapamycin as possible anti-aging drugs for humans.

Quote[edit]

Wyndham, John (1960), The Trouble With Lichen, Penguin, p. 91, This is the twentieth century, for what it's worth. It's not the age of reason, or even the nineteenth century, it's the era of flummery, and the day of the devious approach. Reason's gone into the backrooms where it works to devise means by which people can be induced to emote in the desired direction. .

References[edit]

  1. ^ Faragher, Richard (September 5, 2012). "The real trouble with lichen". C4AR International Conference 'Ageing: Moving Beyond Boundaries'. Lancaster University. Retrieved 2 April 2015. 
  2. ^ a b Harrison DE, Strong R, Sharp ZD et al. (2009). "Rapamycin fed late in life extends lifespan in genetically heterogeneous mice". Nature 460: 392–5. doi:10.1038/nature08221. PMC 2786175. PMID 19587680. Lay summaryThe Times (2009-07-08). 
  3. ^ Stanfel MN, Shamieh LS, Kaeberlein M et al. (2009). "The TOR pathway comes of age". Biochim Biophys Acta 1790 (10): 1067–74. doi:10.1016/j.bbagen.2009.06.007. PMC 3981532. PMID 19539012. 
  4. ^ Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R (February 2011). "Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice". J. Gerontol. A Biol. Sci. Med. Sci. 66 (2): 191–201. doi:10.1093/gerona/glq178. PMC 3021372. PMID 20974732. 
  5. ^ Ingram DK, Roth GS (Feb–Mar 2011). "Glycolytic inhibition as a strategy for developing calorie restriction mimetics". Experimental Gerontology 46 (2-3): 148–54. doi:10.1016/j.exger.2010.12.001. PMID 21167272. Retrieved 28 September 2013. 
  6. ^ Tardif, S; Ross, C; Bergman, P; Fernandez, E; Javors, M; Salmon, A; Spross, J; Strong, R; Richardson, A (July 19, 2014). "Testing Efficacy of Administration of the Antiaging Drug Rapamycin in a Nonhuman Primate, the Common Marmoset". J Gerontol A Biol Sci Med Sci. doi:10.1093/gerona/glu101. PMID 25038772. 
  7. ^ Check Hayden, Erika (October 30, 2014). "Pet dogs set to test anti-ageing drug". Nature 514 (7524): 546. doi:10.1038/514546a. PMID 25355339. Retrieved 2 April 2015. 
  8. ^ Mannick, JB; Del Giudice, G; Lattanzi, M; Valiante, NM; Paestgaard, J; Huang, B; Lonetto, MA; Maecker, HT; Kovarik, J; Carson, S; Klickstein, LB (December 24, 2014). "mTOR inhibition improves immune function in the elderly". Sci Transl Med 6 (268): 268ra179. doi:10.1126/scitranslmed.3009892. 

External links[edit]