Truncated hexagonal tiling

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Truncated hexagonal tiling
Truncated hexagonal tiling
Type Semiregular tiling
Vertex configuration 3.12.12
Schläfli symbol t{6,3}
Wythoff symbol 2 3 | 6
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Symmetry p6m, [6,3], (*632)
Rotation symmetry p6, [6,3]+, (632)
Bowers acronym Toxat
Dual Triakis triangular tiling
Properties Vertex-transitive
Truncated hexagonal tiling
Vertex figure: 3.12.12

In geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane. There are 2 dodecagons (12-sides) and one triangle on each vertex.

As the name implies this tiling is constructed by a truncation operation applies to a hexagonal tiling, leaving dodecagons in place of the original hexagons, and new triangles at the original vertex locations. It is given an extended Schläfli symbol of t{6,3}.

Conway calls it a truncated hextille, constructed as a truncation operation applied to a hexagonal tiling (hextille).

There are 3 regular and 8 semiregular tilings in the plane.

Uniform colorings[edit]

There is only one uniform coloring of a truncated hexagonal tiling. (Naming the colors by indices around a vertex: 122.)

Uniform polyhedron-63-t01.png

Related polyhedra and tilings[edit]

The dodecagonal faces can be distorted into different geometries, like:

P5-spec.png P7-spec.png

This tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and [n,3] Coxeter group symmetry.

Dimensional family of truncated polyhedra and tilings: 3.2n.2n
Symmetry
*n32
[n,3]
Spherical Euclidean Compact hyperbolic Paracompact
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
 
*832
[8,3]...
 
*∞32
[∞,3]
 
Truncated
figures
Spherical triangular prism.png
3.4.4
Uniform tiling 332-t01-1-.png
3.6.6
Uniform tiling 432-t01.png
3.8.8
Uniform tiling 532-t01.png
3.10.10
Uniform tiling 63-t01.png
3.12.12
Uniform tiling 73-t01.png
3.14.14
Uniform tiling 83-t01.png
3.16.16
H2 tiling 23i-3.png
3.∞.∞
Coxeter
Schläfli
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
t{2,3}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t{3,3}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
t{4,3}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
t{5,3}
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
t{6,3}
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png
t{7,3}
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node.png
t{8,3}
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png
t{∞,3}
Uniform dual figures
Triakis
figures
Triangular dipyramid.png
V3.4.4
Triakistetrahedron.jpg
V3.6.6
Triakisoctahedron.jpg
V3.8.8
Triakisicosahedron.jpg
V3.10.10
Tiling Dual Semiregular V3-12-12 Triakis Triangular.svg
V3.12.12
Ord7 triakis triang til.png
V3.14.14
Ord8 triakis triang til.png
V3.16.16
Ord-infin triakis triang til.png
V3.∞.∞
Coxeter CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.png

Wythoff constructions from hexagonal and triangular tilings[edit]

Like the uniform polyhedra there are eight uniform tilings that can be based from the regular hexagonal tiling (or the dual triangular tiling).

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms, 7 which are topologically distinct. (The truncated triangular tiling is topologically identical to the hexagonal tiling.)

Uniform hexagonal/triangular tilings
Symmetry: [6,3], (*632) [6,3]+
(632)
[1+,6,3]
(*333)
[6,3+]
(3*3)
{6,3} t{6,3} r{6,3}
r{3[3]}
t{3,6}
t{3[3]}
{3,6}
{3[3]}
rr{6,3}
s2{6,3}
tr{6,3} sr{6,3} h{6,3}
{3[3]}
h2{6,3}
r{3[3]}
s{3,6}
s{3[3]}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel branch 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel branch 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel branch.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png =
CDel branch 10ru.pngCDel split2.pngCDel node.png or CDel branch 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel branch 10ru.pngCDel split2.pngCDel node 1.png or CDel branch 01rd.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
= CDel branch hh.pngCDel split2.pngCDel node h.png
Uniform tiling 63-t0.png Uniform tiling 63-t01.png Uniform tiling 63-t1.png
Uniform tiling 333-t01.png
Uniform tiling 63-t12.png
Uniform tiling 333-t012.png
Uniform tiling 63-t2.png
Uniform tiling 333-t2.png
Uniform tiling 63-t02.png
Rhombitrihexagonal tiling snub edge coloring.png
Uniform tiling 63-t012.png Uniform tiling 63-snub.png Uniform tiling 333-t0.pngUniform tiling 333-t1.png Uniform tiling 333-t02.pngUniform tiling 333-t12.png Uniform tiling 63-h12.png
Uniform tiling 333-snub.png
Uniform duals
V63 V3.122 V(3.6)2 V63 V36 V3.4.12.4 V.4.6.12 V34.6 V36 V(3.6)2 V36
CDel node f1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 6.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 6.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Uniform tiling 63-t2.png Tiling Dual Semiregular V3-12-12 Triakis Triangular.svg Rhombic star tiling.png Uniform tiling 63-t2.png Uniform tiling 63-t0.png Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg Tiling Dual Semiregular V3-3-3-3-6 Floret Pentagonal.svg Uniform tiling 63-t0.png Rhombic star tiling.png Uniform tiling 63-t0.png

Circle packing[edit]

The truncated hexagonal tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with 3 other circles in the packing (kissing number). This is the lowest density packing that can be created from a uniform tiling. The dodecagonal gaps can be filled perfectly with 7 circles, creating a denser 3-uniform packing.

Truncated hexagonal tiling circle packing.png Truncated hexagonal tiling circle packing2.png

Triakis triangular tiling[edit]

Triakis triangular tiling
Tiling Dual Semiregular V3-12-12 Triakis Triangular.svg
Type Dual semiregular tiling
Coxeter diagram CDel node.pngCDel 3.pngCDel node f1.pngCDel 6.pngCDel node f1.png
Faces triangle
Face configuration V3.12.12
Symmetry group p6m, [6,3], (*632)
Rotation group p6, [6,3]+, (632)
Dual Truncated hexagonal tiling
Properties face-transitive
On painted porcelain, China

The triakis triangular tiling is a tiling of the Euclidean plane. It is an equilateral triangular tiling with each triangle divided into three obtuse triangles (angles 30-30-120) from the center point. It is labeled by face configuration V3.12.12 because each isosceles triangle face has two types of vertices: one with 3 triangles, and two with 12 triangles.

Conway calls it a kisdeltile,[1] constructed as a kis operation applied to a triangular tiling (deltille).

In Japan the pattern is called asanoha for hemp leaf, although the name also applies to other triakis shapes like the triakis icosahedron and triakis octahedron.[2]

It is the dual tessellation of the truncated hexagonal tiling which has one triangle and two dodecagons at each vertex.[3]

P4 dual.png

See also[edit]

References[edit]

  1. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 [1] (Chapter 21, Naming Archimedean and Catalan polyhedra and tilings, p288 table)
  2. ^ http://www.mikworks.com/originalwork/asanoha/
  3. ^ Weisstein, Eric W., "Dual tessellation", MathWorld.

External links[edit]