Trusted Platform Module

From Wikipedia, the free encyclopedia
  (Redirected from Trusted platform module)
Jump to: navigation, search
Components of a Trusted Platform Module

The Trusted Platform Module (TPM) is an international standard for a secure cryptoprocessor, which is a dedicated microprocessor designed to secure hardware by integrating cryptographic keys into devices. The TPM technical specification was written by a computer industry consortium called the Trusted Computing Group (TCG). The International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) standardized the specification as ISO/IEC 11889 in 2009.[1]

The Trusted Computing Group continues to revise the TPM specification. They published revision 116 of the TPM specification version 1.2 on 3 March 2011,[2] while draft of the TPM specification version 2.0 is undergoing review as of November 2013.[3]

Overview[edit]

The Trusted Platform Module offers facilities for the secure generation of cryptographic keys, and limitation of their use, in addition to a random number generator.[4][5] It also includes capabilities such as remote attestation and sealed storage, as follows:

Remote attestation
Creates a nearly unforgeable hash key summary of the hardware and software configuration. The program encrypting the data determines the extent of the summary of the software. This allows a third party to verify that the software has not been changed.
Binding
Encrypts data using the TPM endorsement key, a unique RSA key burned into the chip during its production, or another trusted key descended from it.[6]
Sealing
Encrypts data in a similar manner to binding, but in addition specifies a state in which the TPM must be in order for the data to be decrypted (unsealed).[7]

Software can use a Trusted Platform Module to authenticate hardware devices. Since each TPM chip has a unique and secret RSA key burned in as it is produced, it is capable of performing platform authentication.

Generally, pushing the security down to the hardware level in conjunction with software provides more protection than a software-only solution.[citation needed] However even where a TPM is used, a key would still be vulnerable while a software application that has obtained it from the TPM is using it to perform encryption/decryption operations, as has been illustrated in the case of a cold boot attack. This problem is eliminated if key(s) used in the TPM are not accessible on a bus or to external programs and all encryption/decryption is done in the TPM.[citation needed]

Uses[edit]

An example of use is Intel's Trusted Execution Technology (TXT). Intel's TXT is used to create a "chain of trust", and to remotely attest that a computer has a specified hardware setup and is using specified software.[8]

Platform integrity[edit]

The primary scope of a TPM (in combination with other TCG implementations) is to assure the integrity of a platform. In this context "integrity" means "behave as intended", and a "platform" is generically any computer platform – not limited to PCs or a particular operating system: start the power-on boot process from a trusted condition and extend this trust until the operating system has fully booted and applications are running.

Together with the BIOS, the TPM forms a "root of trust": the TPM contains several PCRs (Platform Configuration Registers) that allow a secure storage and reporting of security relevant metrics. These metrics can be used to detect changes to previous configurations and derive decisions how to proceed. Good examples can be found in the Linux Unified Key Setup (LUKS),[9] and in Microsoft's BitLocker Drive Encryption and PrivateCore vCage memory encryption (see below).

Therefore the BIOS and the operating system have the primary responsibility to utilize the TPM in order to assure platform integrity. Only then can applications and users running on that platform rely on its security characteristics, such as secure I/O "what you see is what you get", uncompromised keyboard entries, memory and storage operations.

Disk encryption[edit]

Full disk encryption applications, such as SecureDoc, the dm-crypt feature of modern Linux kernels, and the BitLocker Drive Encryption feature of some Microsoft operating systems, can use this technology to protect the keys used to encrypt the computer's hard disks and provide integrity authentication for a trusted boot pathway (for example BIOS, boot sector, etc.) A number of third party full disk encryption products also support the TPM chip. TrueCrypt however decided not to use it.[10]

Password protection[edit]

Access to keys, data or systems is often protected and requires authentication by presenting a password. If the authentication mechanism is implemented in software only, the access typically is prone to "dictionary attacks." Since the TPM is implemented in a dedicated hardware module, a dictionary attack prevention mechanism was built in, which effectively protects against guessing or automated dictionary attacks, while still allowing the user a sufficient and reasonable number of tries. With this hardware based dictionary attack prevention, the user can opt for shorter or weaker passwords which are more memorable. Without this level of protection, only passwords with high complexity would provide sufficient protection.

Other uses and concerns[edit]

Almost any encryption-enabled application can, in theory, make use of a TPM, including:

Other uses exist, some of which give rise to privacy concerns. The "physical presence" feature of the TPM addresses some of these concerns by requiring BIOS-level confirmation for operations such as activating, deactivating, clearing or changing ownership of the TPM by someone who is physically present at the console of the machine.[11][12]

TPM hardware[edit]

Trusted Platform Module installed on a motherboard

Starting in 2006, many new laptop computers have been sold with a Trusted Platform Module chip built-in. In the future, this concept could be co-located on an existing motherboard chip in computers, or any other device where a TPM's facilities could be employed, such as a cell phone. On a PC, the LPC bus is used.

TPM microcontrollers are currently manufactured by Atmel, Broadcom, Infineon,[13] Intel,[14] ITE,[15] Nuvoton (formerly Winbond), Sinosun, STMicroelectronics and Toshiba.

Criticism[edit]

The Trusted Computing Group, who developed the specification, have faced resistance in some areas to deploy this technology, especially in academia, where some authors see possible uses not specifically related to Trusted Computing, which may raise privacy concerns. The concerns include the abuse of remote validation of software (where the manufacturer — and not the user who owns the computer system — decides what software is allowed to run) and possible ways to follow actions taken by the user being recorded in a database, in a manner that is completely undetectable to the user.[16]

Spread[edit]

Currently TPM is used by nearly all PC and notebook manufacturers, primarily offered on professional product lines.

TPM is implemented by several vendors:

  • Acer, Wipro, Asus, Dell, Inc., Gigabyte Technology, IBM, LG, Fujitsu, HP, Lenovo, MSI, Panasonic, Samsung, Sony, Eurocom Corporation, and Toshiba provide TPM integration on their devices.[citation needed]
  • Infineon provides both TPM chips and TPM software, which is delivered as OEM versions with new computers, as well as separately by Infineon for products with TPM technology which complies to the TCG standards.
  • Wave Systems offers a broad range of client and server software, which runs on all TPM chip-sets. For instance, this software is pre-installed on several models from Dell and Gateway.
  • Microsoft's operating systems Windows Vista, Windows 7 and Windows 8 as well as Microsoft Windows Server starting from Windows Server 2008, use the chip in conjunction with the included disk encryption software named BitLocker. Microsoft has announced that from January 1, 2015 all computers will have to be equipped with a TPM 2.0 module in order to pass the Windows 8.1 hardware certification.[17]
  • In 2006, with the introduction of the first Macintosh models with Intel processors, Apple started to ship Macs with TPMs. Apple never provided an official driver, but there was a port under GPL available.[18] Apple has not shipped a computer with TPM since 2006.[19]
  • In 2011, Taiwanese manufacturer MSI launched its Windpad 110W tablet featuring an AMD cpu and Infineon Security Platform TPM, which ships with controlling software version 3.7. The chip is disabled by default but can be enabled with the included, pre-installed software.[20]
  • Oracle ships TPMs in their recent X- and T-Series Systems such as the T3 or T4 series of servers.[21] Support is included in Solaris 11.[22]
  • Google includes TPMs in Chromebooks as part of their security model.[23]
  • VMware's ESXi hypervisor has supported TPM since 4.x, and from 5.0 it is enabled by default.[24][25]
  • PrivateCore vCage uses TPM chips in conjunction with Intel Trusted Execution Technology (Intel TXT) to validate systems on bootup.

There are also hybrid types, e.g. where the TPM is integrated into the Ethernet chip, as from Broadcom, while the software which runs "on top" is based on Infineon.

See also[edit]

References[edit]

  1. ^ "ISO/IEC 11889-1:2009". ISO.org. International Organization for Standardization. Retrieved 29 November 2013. 
  2. ^ "Trusted Platform Module (TPM) Specifications". Trusted Computing Group. 
  3. ^ "TPM Library Specification". Trusted Computing Group. Retrieved 30 November 2013. 
  4. ^ "Benchmarking the True Random Number Generator of TPM Chips". Retrieved 2012-06-04. 
  5. ^ "TPM Main Specification Level 2 Version 1.2, Revision 116 Part 1 - Design Principles". Retrieved 2012-06-14. "Our definition of the RNG allows implementation of a Pseudo Random Number Generator (PRNG) algorithm. However, on devices where a hardware source of entropy is available, a PRNG need not be implemented. This specification refers to both RNG and PRNG implementations as the RNG mechanism. There is no need to distinguish between the two at the TCG specification level." 
  6. ^ "tspi_data_bind(3) - Encrypts data blob". Trusted Computing Group. Retrieved 2009-10-27. 
  7. ^ "TPM Main Specification Level 2 Version 1.2, Revision 116 Part 3 - Commands". Trusted Computing Group. Retrieved 2011-06-22. 
  8. ^ James Greene (2012). "Intel Trusted Execution Technology: White Paper" (PDF). Intel Corporation. Retrieved 2013-12-18. 
  9. ^ "LUKS support for storing keys in TPM NVRAM". github.com. 2013. Retrieved 2013. 
  10. ^ "FAQ", True crypt .
  11. ^ Pearson, Siani; Balacheff, Boris (2002). Trusted computing platforms: TCPA technology in context. Prentice Hall. ISBN 0-13-009220-7. 
  12. ^ "SetPhysicalPresenceRequest Method of the Win32_Tpm Class". Microsoft. Retrieved 2009-06-12. 
  13. ^ Infineon TPM
  14. ^ Intel
  15. ^ ITE TPM
  16. ^ Stallman, Richard Matthew, "Can You Trust Your Computer", Project GNU, Philosophy, Free Software Foundation 
  17. ^ http://msdn.microsoft.com/en-us/library/windows/hardware/hh748188.aspx
  18. ^ Amit Singh: Trusted Computing for Mac OS X
  19. ^ Your Laptop Data Is Not Safe. So Fix It.
  20. ^ "TPM. Complete protection for peace of mind". 
  21. ^ "Oracle Solaris and Oracle SPARC T4 Servers— Engineered Together for Enterprise Cloud Deployments". Oracle Corporation. Retrieved 2012-10-12. 
  22. ^ "tpmadm manpage". Oracle Corporation. Retrieved 2012-10-12. 
  23. ^ "Chromebook security: browsing more securely". Google Chrome Blog. Retrieved 2013-04-07. 
  24. ^ "Security and the Virtualization Layer", VMware.com
  25. ^ "Enabling Intel TXT on Dell PowerEdge Servers with VMware ESXi", Dell.com

External links[edit]