# Tsallis statistics

The term Tsallis statistics usually refers to the collection of mathematical functions and associated probability distributions that were originated by Constantino Tsallis. Using these tools, it is possible to derive Tsallis distributions from the optimization of the Tsallis entropic form. A continuous real parameter q can be used to adjust the distributions so that distributions which have properties intermediate to that of Gaussian and Lévy distributions can be created. This parameter q represents the degree of non-extensivity of the distribution. Tsallis statistics are useful for characterising complex, anomalous diffusion.

## Tsallis functions

The q-deformed exponential and logarithmic functions where first introduced in Tsallis statistics in 1994 [1]

### q-exponential

The q-exponential is a deformation of the exponential function using the real parameter q.[2]

$e_q(x) = \begin{cases} \exp(x) & \text{if }q=1, \\[6pt] [1+(1-q)x]^{1/(1-q)} & \text{if }q \ne 1 \text{ and } 1+(1-q)x >0, \\[6pt] 0^{1/(1-q)} & \text{if }q \ne 1\text{ and }1+(1-q)x \le 0, \\[6pt] \end{cases}$

Note that the q-exponential in Tsallis statistics is different from a version used elsewhere.

### q-logarithm

The q-logarithm is the inverse of q-exponential and a deformation of the logarithm using the real parameter q.[2]

$\ln_q(x) = \begin{cases} \ln(x) & \text{if }x\ge 0 \text{ and }q=1\\[8pt] \dfrac{x^{1-q} - 1}{1-q} & \text{if }x\ge 0 \text{ and }q\ne 1\\[8pt] \text{Undefined } & \text{if }x\le 0\\[8pt] \end{cases}$

These functions have the property that

$\begin{cases} e_q( \ln_q(x)) = x & (x>0)\\ \ln_q( e_q(x) ) = x & (0