Proton (rocket family)

From Wikipedia, the free encyclopedia
  (Redirected from UR-500)
Jump to: navigation, search
Proton 8K82K
Proton Zvezda crop.jpg
Launch of a Proton-K rocket
Function Unmanned launch vehicle
Manufacturer Khrunichev
Country of origin Soviet Union; Russia
Size
Height 53 metres (174 ft)
Diameter 7.4 metres (24 ft)
Mass 693.81 metric tons (1,529,600 lb) (3 stage)
Stages 3 or 4
Capacity
Payload to LEO 20.7 metric tons (46,000 lb)
Payload to
GTO
6 metric tons (13,000 lb)
Launch history
Status Active
Launch sites Baikonur, LC-200 & LC-81
Total launches 397
Successes 351
Failures 46
First flight Proton: 16 July 1965
Proton-K: 10 March 1967
Proton-M: 7 April 2001
Last flight Proton: 6 July 1966
Proton-K: 30 March 2012
Notable payloads Salyut 6 & Salyut 7
Mir & ISS components
ViaSat-1
First stage
Engines 6 RD-275
Thrust 10.47 MN (1.9 million pounds)
Burn time 126 s
Fuel N2O4/UDMH
Second stage
Engines 3 RD-0210 & 1 RD-0211
Thrust 2.399 MN (539,000 lbf)[1]
Burn time 208 s
Fuel N2O4/UDMH
Third stage
Engines 1 RD-0212
Thrust 630 kN (140,000 lbf)
Burn time
Fuel N2O4/UDMH
Fourth stage - Blok-D/DM
Engines RD-58M
Thrust 83.4 kN (18,700 lbf)
Burn time
Fuel LOX/RP-1

Proton (Russian: Протон) (formal designation: UR-500) is an expendable launch system used for both commercial and Russian government space launches. The first Proton rocket was launched in 1965. Modern versions of the launch system are still in use as of 2014, making it one of the most successful heavy boosters in the history of spaceflight. All Protons are built at the Khrunichev plant in Moscow, transported to the Baikonur Cosmodrome, brought to the launch pad horizontally, and raised into vertical position for launch.[2][3]

As with many Soviet rockets, the names of recurring payloads became associated with the Proton. The moniker "Proton" originates from a series of similarly named scientific satellites, which were among the rocket's first payloads. During the Cold War, it was designated the D-1/D-1e or SL-12/SL-13 by Western intelligence agencies.

Launch capacity to low Earth orbit is about 20.7 tonnes (46,000 lb). Geostationary transfer capacity is about 6 tonnes (13,000 lb). Commercial launches are marketed by International Launch Services (ILS). In a typical launch of a commercial communications satellite destined for geostationary orbit, a Proton M/Briz-M can place a spacecraft with mass at separation of 6,150 kilograms (13,560 lb) into an orbit with an apogee of 35,786 kilometres (22,236 mi), a perigee of 6,257 kilometres (3,888 mi) and an inclination of 19.7°.[4] The rocket is intended to be retired before 2030.[5]

History[edit]

Proton[6] initially started its life as a "super ICBM." It was designed to launch a 100-megaton (or larger) nuclear warhead over a distance of 13,000 km. It was hugely oversized for an ICBM, and was never deployed in such a capacity. It was eventually used as a space launch vehicle. It was the brainchild of Vladimir Chelomei's design bureau as a foil to Sergei Korolev's N1 rocket whose purpose was to send a two-man Zond spacecraft around the Moon; Korolev openly opposed Proton and Chelomei's other designs for their use of toxic propellants. With the termination of the Saturn V program, Proton became the largest expendable launch system in service until the Energia rocket flew in 1987 followed by the U.S. Titan IV in 1989.

A rushed development program led to dozens of failures between 1965 and 1972. Proton did not complete its State Trials until 1977, at which point it was judged to have a higher than 90% reliability.

Proton's design was kept secret until 1986, with the public being only shown the upper stages in film clips and photographs and the first time the complete vehicle was shown to the outside world happened during the televised launch of Mir.

Proton launched the unmanned Soviet circumlunar flights, and was intended to have launched the first Soviet circumlunar spaceflights, before the United States flew the Apollo 8 mission. Proton launched the Salyut space stations, the Mir core segment and expansion modules, and both the Zarya and Zvezda modules of the ISS. It also launched many probes to the Moon, Mars, Venus, and even Halley's Comet (using the 4-stage D-1e version).

Proton also launches commercial satellites, most of them being managed by International Launch Services. The first ILS Proton launch was on 9 April 1996 with the launch of the SES Astra 1F communications satellite.[7]

Since 1994, Proton has earned $4.3 billion for the Russian space industry, and by 2011 this figure is expected to rise to $6 billion.[8]

Proton 8K82K[edit]

Main article: Proton-K

The (GRAU index) 8K82K version is now usually called "Proton K". It is fuelled by very toxic unsymmetrical dimethyl hydrazine and nitrogen tetroxide.[9] These are hypergolic fuels which ignite on contact, avoiding the need for an ignition system, and can be stored at ambient temperatures. This avoids the need for components that are tolerant of low temperatures, and allows the rocket to remain on the pad indefinitely (other launchers with such capability include the U.S. Titan II, Titan III, and Titan IV, the Chinese Long March 2 rocket family and Long March 4 rocket family, the Soviet/Ukrainian Tsyklon launchers, the Soviet/Russian Kosmos-3 and Kosmos-3M launchers and the European Ariane 1 to Ariane 4 launchers). In contrast, cryogenic fuels need periodic replenishment as they boil off.

The fourth stage has multiple variants, depending on the mission. The simplest, Blok D, was used for interplanetary missions. Blok D had no guidance module, depending on the probe to control flight. Three different Blok DM versions (DM, DM2, and DM-2M) were for high Earth orbits. The Blok D/DM were unusual in that the fuel was stored in a toridal tank, around the engine and behind the oxidizer tank.

The initial Proton tests in 1965-66 only used the first two stages of the booster, the complete four-stage vehicle being flown for the first time in 1967. When the Soviet manned space station program began in 1971, Protons began being flown with the Blok D removed for use as a heavy-lift LEO launcher.

Proton-M[edit]

Main article: Proton-M
Proton-M, part being rotated to vertical. In the background the mobile service tower can be observed

The latest version is the Proton M, which can launch 3–3.2 tonnes (6,600–7,100 lb) into geostationary orbit or 5.5 tonnes (12,000 lb) into a geostationary transfer orbit. It can place up to 22 tonnes (49,000 lb) in low Earth orbit with a 51.6-degree inclination, the orbit of the International Space Station (ISS).

The Proton M's improvements include modifications to the lower stages to reduce structural mass, increase thrust, and fully use propellants. Generally a Briz-M (Russian: Бриз meaning Breeze) storable propellant upper stage is used instead of the Blok D or Blok DM stage, eliminating the need for multiple fuel supplies and oxygen top-off due to boiling; however, the Proton-M has also flown with a Blok-DM upper stage. Efforts were also made to reduce dependency on foreign (usually Ukrainian) component suppliers.

Proton launch vehicles and Briz-M upper stages are designed and built by Khrunichev State Research and Production Space Center (Khrunichev) in Moscow, the majority owner of International Launch Services (ILS). The Center is home to all engineering, assembly and test functions of Proton production. With the recent consolidation of the Russian space enterprises, Khrunichev has direct oversight and control of up to 70% of all Proton manufacturing from suppliers to manufacturers. The consolidation directly supports Khrunichev’s ongoing efforts for vertical integration of Proton production.[10]

The most recent enhanced Proton, the Phase III Proton-M/Briz-M launch vehicle, was flight proven on the Russian Federal dual mission of Express AM-44 and Express MD-1 in February 2009 and performed its first commercial launch in March 2010 with the Echostar XIV satellite. The Proton-M/Briz-M phase III configuration is the current standard Proton configuration for ILS. This configuration provides 6150 kg of GTO performance, an increase of 1150 kg over the original Proton-M Briz-M, while maintaining the fundamental design configuration.

Khrunichev has initiated development of a set of phase IV enhancements in order to keep pace with market demands and the mass growth trends of commercial satellites. The implementation of Phase IV Proton Briz-M enhancements will be completed in 2013. The payload mass performance for phase IV has been increased to 6300 kg to a reference GTO orbit with 1500 m/s of residual delta V to GSO.[11]

In August 2012, the Russian Federal Space Agency lost a Russian and an Indonesian communications satellite in an attempt to launch them into orbit using a Proton-M rocket. The satellites failed to reach orbit due to technical difficulties with the last stage of the Proton-M.[12]

On July 2, 2013, a Proton-M launching three GLONASS navigation satellites experienced a spectacular failure reminiscent of the disasters in the early days during the 1960s when shortly after liftoff, the booster crashed near LC-39 at Baikonour. All future Proton flights were suspended pending investigation of the accident, which ended an unbroken stretch of 30 years without a first stage failure.[13]

Launches[edit]

Future developments[edit]

Significant upgrades were temporarily put on hold following announcement of the new Angara launch vehicle. The single largest upgrade was the KVRB stage. This cryogenic stage would have greatly increased capacity. The engine was developed successfully, and the stage as a whole had progressed to hardware. However, as KVRB is noticeably larger than Blok D, the vehicle's aerodynamics, flight control, software, and possibly electronics would have to be reevaluated. In addition, the launch pad can supply existing Protons with common hypergolic fuels from single sources. The upper stages, in particular, are fed by common loading pipes running along the rocket. Switching to a stage with different fuels requires the addition of extra support articles; switching to cryogens requires that such support articles top off the stage periodically.

Heavy variants of Angara will be simpler and cheaper than Proton (and like the Atlas V rocket, will not use hypergolic fuels; instead, it will use the same RP-1 fuel as that used on the Soyuz rocket). They will also be designed from the start to accept a KVRB stage, and will already have a LOX supply at the pad; only a hydrogen supply will be called upon. However, delays in Angara development mean that Protons will continue to fly for some time.

Frank McKenna, CEO of ILS, has indicated that in 2010 the Phase III Proton design would become the standard ILS configuration, with the ability to lift 6.15 metric tons to GTO.[14]

See also[edit]

Similar launch systems[edit]

References[edit]

External links[edit]