Ultraviolet index

From Wikipedia, the free encyclopedia
  (Redirected from UV Index)
Jump to: navigation, search

The ultraviolet index or UV Index is an international standard measurement of the strength of ultraviolet (UV) radiation from the sun at a particular place and time. The scale was developed by Canadian scientists in 1992, then adopted and standardized by the UN's World Health Organization and World Meteorological Organization in 1994.[1][2] It is primarily used in daily forecasts aimed at the general public, and is increasingly available as an hourly forecast as well.

The UV Index is designed as an open-ended linear scale, directly proportional to the intensity of UV radiation that causes sunburn on human skin. For example, if a light-skinned individual (without sunscreen or a suntan) begins to sunburn in 30 minutes at UV Index 6, then that individual should expect to sunburn in about 15 minutes at UV Index 12 — twice the UV, twice as fast.

The purpose of the UV Index is to help people effectively protect themselves from UV radiation, of which excessive exposure causes sunburn, eye damage such as cataracts, skin aging, immunosuppression,[3] DNA damage, and skin cancer (see the section Human health-related effects of ultraviolet radiation). Public health organizations recommend that people protect themselves (for example, by applying sunscreen to the skin and wearing a hat) when the UV Index is 3 or higher; see the table below for more-detailed recommendations.

Description[edit]

The UV Index is a linear scale, with higher values representing a greater risk level of sunburn (which is correlated with other health risks) due to UV exposure. An index of 0 corresponds to zero UV radiation, as is essentially the case at night. An index of 10 corresponds roughly to midday summer sun with a clear sky when the UV Index was originally designed (Toronto 1992). Now summertime index values in the teens are common for tropical latitudes, mountainous altitudes, and areas with above-average ozone layer depletion.[4] Many tanning beds generate even higher UV intensities.[5][6][7]

While the UV Index can be calculated from a direct measurement of the UV spectral power at a given location, as some inexpensive portable devices are able to approximate, the value given in weather reports is usually a prediction based on a computer model. Although this may be in error (especially when cloud conditions are unexpectedly heavy or light), it is usually within ±1 UV Index unit as that which would be measured.[8]

Typical variation of UV Index by time of day and time of year, based on FastRT UV Calculator[9]

When the UV Index is presented on a daily basis, it represents UV intensity around the sun's highest point in the day, called solar noon, halfway between sunrise and sunset. This generally occurs between 11:30 and 12:30, or between 12:30 and 13:30 in areas where daylight saving time is being observed. Predictions are made by a computer model that accounts for the effects of sun elevation and distance, stratospheric ozone, cloud conditions, air pollutants, surface albedo, and ground altitude, all of which influence the amount of UV radiation at the surface.[4] The calculations are weighted in favor of the UV wavelengths to which human skin is most sensitive, according to the CIE-standard McKinlay-Diffey erythemal action spectrum.[10][11] The resulting index cannot be expressed in pure physical units, but is a good indication of likely sunburn damage.


Definition[edit]

Sunburn effect (as measured by the UV Index) is the product of the sunlight spectrum (radiation intensity) and the erythemal action spectrum (skin sensitivity) across the range of UV wavelengths.[10][11]

The UV Index is a number linearly related to the intensity of UV radiation at a given point on the earth's surface. It cannot be simply related to the irradiance (measured in W/m2) because the UV of greatest concern occupies a spectrum of wavelength from 295 to 325 nm, and shorter wavelengths have already been absorbed a great deal when they arrive at the earth's surface. Skin damage from sunburn, however, is related to wavelength, the shorter wavelengths being much more damaging. The UV power spectrum (strictly expressed in watts per square metre per nanometre of wavelength) is therefore weighted according to a weighting curve known as the erythemal action spectrum, and the result integrated over the whole spectrum. This gave Canadian scientists a weighted figure (sometimes called Diffey-weighted UV irradiance, or DUV) typically around 250 mW/m2 in midday summer sun. So, they arbitrarily divided by 25 mW/m2 to generate a convenient index value,[12][13] essentially a scale of 0 to 11+ (though ozone depletion is now resulting in higher values, as mentioned above). Because the scale is linear (and not logarithmic, as is often the case when measuring things such as brightness or sound level), it is reasonable to assume that one hour of exposure at index 10 is approximately equivalent to two hours at index 5, although other factors like the body's ability to repair damage over a given time period could detract from the validity of this assumption.

To illustrate the weighting principle, the incident power density in midday summer sun is typically 0.6 mW/(nm m2) at 295 nm, 74 mW/(nm m2) at 305 nm, and 478 mW/(nm m2) at 325 nm. (Note the huge absorption that has already taken place in the atmosphere at short wavelengths.) The weighting factors applied to these figures are 1.0, 0.22, and 0.003 respectively. (Also note the huge increase in sunburn damage caused by the shorter wavelengths, e.g., 305 nm is 22% as damaging as 295 nm, and 325 nm is 0.3% as damaging as 295 nm.) Integration of these values using all the intermediate weightings over the full spectral range of 290 nm to 400 nm[12] produces a figure of 264 mW/m2 (the DUV), which is then divided by 25 mW/m2 to give a UV Index of 10.6.[13]

History[edit]

After sporadic attempts by various meteorologists to define a "sunburn index", and amid growing concern about ozone depletion, Environment Canada scientists James B. Kerr, C. Thomas McElroy, and David I. Wardle developed the modern UV Index. They introduced it on May 27, 1992, making Canada the first country in the world to broadcast official predictions of UV levels for the next day.[14][15] Many other countries followed suit with their own UV indices, among them the United States in 1994. Initially, the methods of calculating and reporting a UV Index varied significantly from country to country. A global UV Index, first standardized by the World Health Organization and World Meteorological Organization in 1994,[2] gradually replaced the inconsistent regional versions, specifying not only a uniform calculation method (the Canadian definition) but also standard colors and graphics for visual media.[1] In the United States, the WHO standards replaced the original US standards in 2004.

In 2005, the United States[16] and Australia[17] launched the UV Alert. While the two countries have different baseline UV intensity requirements before issuing an alert, their common goal is to raise awareness of the dangers of overexposure to the sun on days with intense UV radiation.

In 2007, the United Nations honored UV Index inventors Kerr, McElroy and Wardle with the Innovators Award for their far-reaching work on reducing public health risks from UV radiation.[18] In the same year, a survey among meteorologists ranked the development of the UV Index as #11 for The Weather Channel's 100 Biggest Weather Moments.

How to use the index[edit]

When the day's predicted UV Index is at various values, the recommendations for protection are as follows:[19]

UV Index Description Media graphic color Recommended protection
0–2.9 Low danger from the sun's UV rays for the average person Green Wear sunglasses on bright days; use sunscreen if there is snow on the ground, which reflects UV radiation, or if you have particularly fair skin.
3–5.9 Moderate risk of harm from unprotected sun exposure Yellow Take precautions, such as covering up, if you will be outside. Stay in shade near midday when the sun is strongest.
6–7.9 High risk of harm from unprotected sun exposure Orange Wear sunglasses and use SPF 30+ sunscreen, cover the body with sun protective clothing and a wide-brim hat, and reduce time in the sun within three hours of solar noon.
8–10.9 Very high risk of harm from unprotected sun exposure Red Wear SPF 30+ sunscreen, a shirt, sunglasses, and a hat. Do not stay in the sun for too long.
11+ Extreme risk of harm from unprotected sun exposure Violet Take all precautions: Wear sunglasses and use SPF 30+ sunscreen, cover the body with a long-sleeve shirt and trousers, wear a very broad hat, and avoid the sun from three hours before until three hours after solar noon.

Cautionary notes[edit]

When interpreting the UV Index and recommendations, be aware that:

  1. The intensity of UV radiation reaching the surface of the earth depends on the angle of the sun in the sky. Each day, the sun achieves its highest angle (highest intensity, shortest shadows) at solar noon, which rarely corresponds to 12:00 on clocks. This is because of the differences between solar time and local time in a given time zone. In general, UV risk is high when the sun is directly enough overhead that people's shadows are shorter than their height.[19]
  2. Likewise, UV intensity can be higher or lower for surfaces at different angles to the horizontal. For example, if people are walking or standing outdoors, UV exposure to the eyes and vertical surfaces of skin, such as the face, can actually be more severe when the sun is lower,[20] such as the end of a summer's day, or winter afternoons on a ski trail. This is partly a consequence of the fact that the measurement equipment upon which the index is based is a flat horizontal surface.
  3. UV intensity can nearly double with reflection from snow[1] or other bright surfaces like water, sand, or concrete.[21]
  4. The recommendations given are for adults with lightly tan skin. While those with darker skin are more likely to withstand greater sun exposure, extra precautions are needed for children and particularly fair-skinned people and those who have sun sensitivity for medical reasons.[21]
  5. Because of the way the UV Index is calculated, it technically expresses the risk of developing sunburn, which is caused mostly by UVB radiation. However, UVA radiation also causes damage (skin aging, melanoma[22]). Under some conditions, including most tanning beds, the UVA level may be disproportionately higher than the UV level described by the UV Index. The use of broad-spectrum (UVA/UVB) sunscreen can help address this concern.
  6. Damage from sun exposure is cumulative over one's lifetime (but see Berking 2005[22]). Cumulative exposure to the sun causes damage to the epidermis (the skin's outer layer) and the dermis (the deeper layer where the skin's framework exists). Damage to the dermal layer changes the structural components, leading to wrinkling. Elastin fibers thicken and become more numerous; collagen is damaged and degraded; and reticulin fibers appear throughout the dermis rather than outlining the specific dermoepidermal junction.[21][23]

See also[edit]

References[edit]

  1. ^ a b c "Global Solar UV Index: A Practical Guide". World Health Organization. 2002. 
  2. ^ a b "Report of the WMO Meeting of Experts on UV-B Measurements, Data Quality and Standardization of UV Indices, Les Diablerets, Switzerland, 25-28 July 1994". World Meteorological Organization: Global Atmosphere Watch, Report No. 95.
  3. ^ Hanneman K.K., Cooper K.D., Baron E.D. (2006), Ultraviolet immunosuppression: mechanisms and consequences. Dermatologic Clinics, 24(1): 19–25.
  4. ^ a b Fioletov V., Kerr J., Fergusson A. (2010), The UV Index: Definition, Distribution and Factors Affecting It. Canadian Journal of Public Health, 101(4): I5–I9.
  5. ^ Gies P. et al (2011), UVR Emissions from Solaria in Australia and Implications for the Regulation Process. Photochemistry and Photobiology, 87(1): 184–190.
  6. ^ Gerber B. et al (2002), Ultraviolet Emission Spectra of Sunbeds. Photochemistry and Photobiology, 76(6): 664–668.
  7. ^ Hornung, R.L. et al (2003), Tanning facility use: are we exceeding Food and Drug Administration limits?. Journal of the American Academy of Dermatology, 49(4): 655–661.
  8. ^ "UV Index: Is It Validated?" NOAA. 2006.
  9. ^ Engelsen O. and Kylling A. (2005), Fast simulation tool for ultraviolet radiation at the Earth's surface. Optical Engineering, 44(4): 041012–041012-7.
  10. ^ a b McKinlay A.F. and Diffey B.L. (1987), A reference action spectrum for ultraviolet induced erythema in human skin. CIE Journal, 6(1): 17–22.
  11. ^ a b "UV Spectral Irradiances & Erythemal Action Spectrum". NOAA. 2006.
  12. ^ a b "How UV Index Is Calculated". EPA SunWise. 2012.
  13. ^ a b "How Is the UV Index Calculated?" Smithsonian Institution. Accessed August 20, 2007.
  14. ^ Kerr J.B., McElroy C.T., Tarasick D.W., Wardle D.I. (1994), The Canadian Ozone Watch and UV-B advisory programs. Proceedings of the Quadrennial Ozone Symposium 1992: 794–797.
  15. ^ "Environment Canada's UV Index Celebrates Ten Years" (Press release). Environment Canada. May 27, 2002. 
  16. ^ "UV Alert". EPA SunWise. 2011.
  17. ^ "SunSmart UV Alert". Cancer Council Australia. 2014.
  18. ^ "Ozone awards". World Meteorological Organization. October 2007. 
  19. ^ a b "UV Index Scale". EPA Sunwise. 2014.
  20. ^ Hu L.W. et al (2010), Diurnal Variations in Solar Ultraviolet Radiation on Horizontal and Vertical Plane. Iranian Journal of Public Health, 39(3): 70–81.
  21. ^ a b c Dresbach S.H. and Brown W. (2008). "Ultraviolet Radiation". Ohioline Fact Sheet Series. CDFS-199-08. Ohio State University Extension. 
  22. ^ a b Berking C. (2005), The role of ultraviolet irradiation in malignant melanoma. Hautarzt, 56(7): 687–696.
  23. ^ Godar D.E. et al (2003), UV Doses of Young Adults. Photochemistry and Photobiology, 77(4): 453–457.

External links[edit]