Ultrasonic transducer

From Wikipedia, the free encyclopedia
  (Redirected from Ultrasonic sensor)
Jump to: navigation, search

Ultrasonic transducers are transducers that convert ultrasound waves to electrical signals or vice versa. Those that both transmit and receive may also be called ultrasound transceivers; many ultrasound sensors besides being sensors are indeed transceivers because they can both sense and transmit. These devices work on a principle similar to that of transducers used in radar and sonar systems, which evaluate attributes of a target by interpreting the echoes from radio or sound waves, respectively. Active ultrasonic sensors generate high frequency sound waves and evaluate the echo which is received back by the sensor, measuring the time interval between sending the signal and receiving the echo to determine the distance to an object. Passive ultrasonic sensors are basically microphones that detect ultrasonic noise that is present under certain conditions, convert it to an electrical signal, and report it to a computer.

Capabilities and limitations[edit]

This technology can be used for measuring wind speed and direction (anemometer), tank or channel level, and speed through air or water. For measuring speed or direction, a device uses multiple detectors and calculates the speed from the relative distances to particulates in the air or water. To measure tank or channel level, the sensor measures the distance to the surface of the fluid. Further applications include: humidifiers, sonar, medical ultrasonography, burglar alarms and non-destructive testing.

Systems typically use a transducer which generates sound waves in the ultrasonic range, above 18 kHz, by turning electrical energy into sound, then upon receiving the echo turn the sound waves into electrical energy which can be measured and displayed.

The technology is limited by the shapes of surfaces and the density or consistency of the material. Foam, in particular, can distort surface level readings.[1]

This also means that you can see what is coming and you can track things.


Sound field of a non focusing 4 MHz ultrasonic transducer with a near field length of N = 67 mm in water. The plot shows the sound pressure at a logarithmic db-scale.
Sound pressure field of the same ultrasonic transducer (4 MHz, N = 67 mm) with the transducer surface having a spherical curvature with the curvature radius R = 30 mm

An ultrasonic transducer is a device that converts energy into ultrasound, or sound waves above the normal range of human hearing. While technically a dog whistle is an ultrasonic transducer that converts mechanical energy in the form of air pressure into ultrasonic sound waves, the term is more apt to be used to refer to piezoelectric transducers or capacitive transducers that convert electrical energy into sound. Piezoelectric crystals have the property of changing size when a voltage is applied; applying an alternating current (AC) across them causes them to oscillate at very high frequencies, thus producing very high frequency sound waves.

The location at which a transducer focuses the sound can be determined by the active transducer area and shape, the ultrasound frequency, and the sound velocity of the propagation medium. The diagrams show the sound fields of an unfocused and a focusing ultrasonic transducer in water.

Since piezoelectric crystals generate a voltage when force is applied to them, the same crystal can be used as an ultrasonic detector. Some systems use separate transmitter and receiver components while others combine both in a single piezoelectric transceiver.

Non-piezoelectric principles are also used in construction of ultrasound transmitters. Magnetostrictive materials slightly change size when exposed to a magnetic field; such materials can be used to make transducers. A capacitor microphone uses a thin plate which moves in response to ultrasound waves; changes in the electric field around the plate convert sound signals to electric currents, which can be amplified.

Use in medicine[edit]

Medical ultrasonic transducers (probes) come in a variety of different shapes and sizes for use in making pictures of different parts of the body. The transducer may be passed over the surface of the body or inserted into a body opening such as the rectum or vagina. Clinicians who perform ultrasound-guided procedures often use a probe positioning system to hold the ultrasonic transducer.

Air detection sensors are used in various roles.[further explanation needed] Non-invasive air detection capabilities in the most critical applications where the safety of a patient is mandatory. Many of the variables, which can affect performance of amplitude or continuous wave based sensing systems, are eliminated or greatly reduced, thus yielding accurate and repeatable detection. The principle behind the technology is that the transmit signal consists of short bursts of ultrasonic energy. After each burst, the electronics looks for a return signal within a small window of time corresponding to the time it takes for the energy to pass through the vessel. Only signals received during this period will qualify for additional signal processing.

Use in industry[edit]

Ultrasonic sensors are used to detect movement of targets and to measure the distance to targets in many automated factories and process plants. Sensors with an on or off digital output are available for detecting the movement of objects, and sensors with an analog output which varies proportionally to the sensor to target separation distance are commercially available. They can be used to sense the edge of material as part of a web guiding system.

Ultrasonic sensors are widely used in automotive applications for parking assist technology. Ultrasonic sensors are being tested in a number of uses including ultrasonic people detection and assisting in autonomous UAV navigation.

Because ultrasonic sensors use sound rather than light for detection, they work in applications where photoelectric sensors may not. Ultrasonics are a great solution for clear object detection, clear label detection[2] and for liquid level measurement, applications that photoelectrics struggle with because of target translucence. Target color and/or reflectivity do not affect ultrasonic sensors which can operate reliably in high-glare environments.[3]

Passive ultrasonic sensors may be used to detect high-pressure gas or liquid leaks, or other hazardous conditions that generate ultrasonic sound.

High-power ultrasonic emitters are used in commercially available ultrasonic cleaning devices. An ultrasonic transducer is affixed to a stainless steel pan which is filled with a solvent (frequently water or isopropanol), and a square wave is applied to it, imparting vibrational energy in the liquid.

See also[edit]


  1. ^ "Foam (and how to counter it) in Flumes and Weirs". Openchannelflow.com. 2013-03-18. Retrieved 2015-03-17. 
  2. ^ "Label Sensor Types and Technologies, Clear Label Sensor Choice". Labelsensors.com. Retrieved 2015-03-17. 
  3. ^ [1][dead link]

External links[edit]