From Wikipedia, the free encyclopedia
Jump to: navigation, search
Hydrogen (diatomic nonmetal)
Helium (noble gas)
Lithium (alkali metal)
Beryllium (alkaline earth metal)
Boron (metalloid)
Carbon (polyatomic nonmetal)
Nitrogen (diatomic nonmetal)
Oxygen (diatomic nonmetal)
Fluorine (diatomic nonmetal)
Neon (noble gas)
Sodium (alkali metal)
Magnesium (alkaline earth metal)
Aluminium (other metals)
Silicon (metalloid)
Phosphorus (polyatomic nonmetal)
Sulfur (polyatomic nonmetal)
Chlorine (diatomic nonmetal)
Argon (noble gas)
Potassium (alkali metal)
Calcium (alkaline earth metal)
Scandium (transition metal)
Titanium (transition metal)
Vanadium (transition metal)
Chromium (transition metal)
Manganese (transition metal)
Iron (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Copper (transition metal)
Zinc (transition metal)
Gallium (other metals)
Germanium (metalloid)
Arsenic (metalloid)
Selenium (polyatomic nonmetal)
Bromine (diatomic nonmetal)
Krypton (noble gas)
Rubidium (alkali metal)
Strontium (alkaline earth metal)
Yttrium (transition metal)
Zirconium (transition metal)
Niobium (transition metal)
Molybdenum (transition metal)
Technetium (transition metal)
Ruthenium (transition metal)
Rhodium (transition metal)
Palladium (transition metal)
Silver (transition metal)
Cadmium (transition metal)
Indium (other metals)
Tin (other metals)
Antimony (metalloid)
Tellurium (metalloid)
Iodine (diatomic nonmetal)
Xenon (noble gas)
Caesium (alkali metal)
Barium (alkaline earth metal)
Lanthanum (lanthanide)
Cerium (lanthanide)
Praseodymium (lanthanide)
Neodymium (lanthanide)
Promethium (lanthanide)
Samarium (lanthanide)
Europium (lanthanide)
Gadolinium (lanthanide)
Terbium (lanthanide)
Dysprosium (lanthanide)
Holmium (lanthanide)
Erbium (lanthanide)
Thulium (lanthanide)
Ytterbium (lanthanide)
Lutetium (lanthanide)
Hafnium (transition metal)
Tantalum (transition metal)
Tungsten (transition metal)
Rhenium (transition metal)
Osmium (transition metal)
Iridium (transition metal)
Platinum (transition metal)
Gold (transition metal)
Mercury (transition metal)
Thallium (other metals)
Lead (other metals)
Bismuth (other metals)
Polonium (other metals)
Astatine (metalloid)
Radon (noble gas)
Francium (alkali metal)
Radium (alkaline earth metal)
Actinium (actinide)
Thorium (actinide)
Protactinium (actinide)
Uranium (actinide)
Neptunium (actinide)
Plutonium (actinide)
Americium (actinide)
Curium (actinide)
Berkelium (actinide)
Californium (actinide)
Einsteinium (actinide)
Fermium (actinide)
Mendelevium (actinide)
Nobelium (actinide)
Lawrencium (actinide)
Rutherfordium (transition metal)
Dubnium (transition metal)
Seaborgium (transition metal)
Bohrium (transition metal)
Hassium (transition metal)
Meitnerium (transition metal (predicted))
Darmstadtium (transition metal (predicted))
Roentgenium (transition metal (predicted))
Copernicium (transition metal)
Ununtrium (other metals (predicted))
Flerovium (other metals (predicted))
Ununpentium (other metals (predicted))
Livermorium (other metals (predicted))
Ununseptium (metalloid (predicted))
Ununoctium (noble gas (predicted))
Ununennium (alkali metal (predicted))
Unbinilium (alkaline earth metal (predicted))
Unquadunium (superactinide (predicted))
Unquadbium (superactinide (predicted))
Unquadtrium (superactinide (predicted))
Unquadquadium (superactinide (predicted))
Unquadpentium (superactinide (predicted))
Unquadhexium (superactinide (predicted))
Unquadseptium (superactinide (predicted))
Unquadoctium (superactinide (predicted))
Unquadennium (superactinide (predicted))
Unpentnilium (superactinide (predicted))
Unpentunium (superactinide (predicted))
Unpentbium (superactinide (predicted))
Unpenttrium (superactinide (predicted))
Unpentquadium (superactinide (predicted))
Unpentpentium (superactinide (predicted))
Unpenthexium (transition metal (predicted))
Unpentseptium (transition metal (predicted))
Unpentoctium (transition metal (predicted))
Unpentennium (transition metal (predicted))
Unhexnilium (transition metal (predicted))
Unhexunium (transition metal (predicted))
Unhexbium (transition metal (predicted))
Unhextrium (transition metal (predicted))
Unhexquadium (transition metal (predicted))
Unhexpentium (alkali metal (predicted))
Unhexhexium (alkaline earth metal (predicted))
Unhexseptium (other metals (predicted))
Unhexoctium (other metals (predicted))
Unhexennium (other metals (predicted))
Unseptnilium (other metals (predicted))
Unseptunium (diatomic nonmetal (predicted))
Unseptbium (noble gas (predicted))
Unbiunium (superactinide (predicted))
Unbibium (superactinide (predicted))
Unbitrium (superactinide (predicted))
Unbiquadium (superactinide (predicted))
Unbipentium (superactinide (predicted))
Unbihexium (superactinide (predicted))
Unbiseptium (superactinide (predicted))
Unbioctium (superactinide (predicted))
Unbiennium (superactinide (predicted))
Untrinilium (superactinide (predicted))
Untriunium (superactinide (predicted))
Untribium (superactinide (predicted))
Untritrium (superactinide (predicted))
Untriquadium (superactinide (predicted))
Untripentium (superactinide (predicted))
Untrihexium (superactinide (predicted))
Untriseptium (superactinide (predicted))
Untrioctium (superactinide (predicted))
Untriennium (superactinide (predicted))
Unquadnilium (superactinide (predicted))
Unsepttrium (eka-superactinide (predicted))
Unseptquadium (eka-superactinide (predicted))
Unseptpentium (eka-superactinide (predicted))
Unsepthexium (eka-superactinide (predicted))
Unseptseptium (eka-superactinide (predicted))
Unseptoctium (eka-superactinide (predicted))
Unseptennium (eka-superactinide (predicted))
Unoctnilium (eka-superactinide (predicted))
Unoctunium (eka-superactinide (predicted))
Unoctbium (eka-superactinide (predicted))
Unocttrium (eka-superactinide (predicted))
Unoctquadium (eka-superactinide (predicted))


Ununennium in the periodic table
General properties
Name, symbol, number ununennium, Uue, 119
Pronunciation Listeni/n.nˈɛniəm/
Element category unknown
but probably an alkali metal
Group, period, block 1 (alkali metals), 8, s
Standard atomic weight [315] (predicted)[1]
Electron configuration [Uuo] 8s1 (predicted)[2]
2, 8, 18, 32, 32, 18, 8, 1 (predicted)
Physical properties
Phase unknown (could be solid or liquid)[2]
Density (near r.t.) 3 (predicted)[2] g·cm−3
Melting point 273–303 K, 0–30 °C, 32–86 (predicted)[2] °F
Boiling point 903 K, 630 °C, 1166 (predicted)[1] °F
Heat of fusion 2.01–2.05 (extrapolated)[3] kJ·mol−1
Atomic properties
Oxidation states 1, 3 (predicted)[2]
Ionization energies 1st: 463.1 (predicted)[4] kJ·mol−1
2nd: 1698.1 (predicted)[4] kJ·mol−1
Atomic radius 240 (predicted)[2] pm
Covalent radius 263–281 (extrapolated)[3] pm
Naming IUPAC systematic element name
Most stable isotopes
Main article: Isotopes of ununennium
iso NA half-life DM DE (MeV) DP
294Uue (predicted)[2] syn ~1–10 μs α 290Uus
295Uue (predicted)[5] syn 0.2 ms α 291Uus
296Uue (predicted)[5] syn 0.2 ms α 292Uus
· references

Ununennium, also known as eka-francium or element 119, is the temporary name of a chemical element in the periodic table that has the temporary symbol Uue and has the atomic number 119. To date, attempted syntheses of this element have been unsuccessful. Since it is below the alkali metals it might have properties similar to those of francium or caesium and thus be extremely reactive with water and air (though relativistic effects might make it less reactive than francium and caesium). A predicted oxidation state is +1; however, unlike all the other alkali metals, it is also predicted to show the +3 oxidation state.

Ununennium would be the first element in the eighth period of the periodic table.

Attempts at synthesis[edit]

The synthesis of ununennium was attempted in 1985 by bombarding a target of einsteinium-254 with calcium-48 ions at the superHILAC accelerator at Berkeley, California:

\,^{254}_{99}\mathrm{Es} + \,^{48}_{20}\mathrm{Ca} \to \,^{302}_{119}\mathrm{Uue} ^{*}

No atoms were identified, leading to a limiting yield of 300 nb.[6]

As of May 2012, plans are under way to attempt to synthesize the isotopes 295Uue and 296Uue by bombarding a target of berkelium with titanium at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany:[7][8]

\,^{249}_{97}\mathrm{Bk} + \,^{50}_{22}\mathrm{Ti} \to \,^{296}_{119}\mathrm{Uue} \,+3\,^{1}_{0}\mathrm{n}
\,^{249}_{97}\mathrm{Bk} + \,^{50}_{22}\mathrm{Ti} \to \,^{295}_{119}\mathrm{Uue} \,+4\,^{1}_{0}\mathrm{n}

Predicted decay characteristics[edit]

The alpha-decay half-lives of 1700 nuclei with 100 ≤ Z ≤ 130 have been calculated in a quantum tunneling model with alpha-decay Q-values from different mass estimates.[9][10][11] The alpha-decay half-lives predicted for 291–307119 are of the order of micro-seconds. The highest value of the alpha-decay half-life predicted in the quantum tunneling model with the mass estimates from a macroscopic-microscopic model is ~485 microseconds for the isotope 294119. For 302119 it is ~163 microseconds.

Target-projectile combinations leading to Z=119 compound nuclei[edit]

The below table contains various combinations of targets and projectiles which could be used to form compound nuclei with an atomic number of 119.

Target Projectile CN Attempt result
254Es 48Ca 302Uue Failure to date
249Bk 50Ti 299Uue Planned reaction

Theoretical calculations on evaporation cross sections[edit]

The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

DNS = Di-nuclear system; σ = cross section

Target Projectile CN Channel (product) σ max Model Ref
254Es 48Ca 302Uue 3n (299Uue) 0.5 pb DNS [12]

Extrapolated chemical properties[edit]

Ununennium is expected to behave normally for an alkali metal and exhibit a strong +1 oxidation state. However, the energetic properties of its valence electron would increase its first ionization energy, making it less reactive than expected and more like potassium than caesium chemically. This would also decrease the metallic and ionic radii of ununennium.[13] Ununennium is also predicted to be the first alkali metal to display the +3 oxidation state, due to the ionization energy of the 7p3/2 electrons, which is predicted to be very low.[2]

See also[edit]


  1. ^ a b Fricke, B.; Waber, J. T. (1971). "Theoretical Predictions of the Chemistry of Superheavy Elements". Actinides Reviews 1: 433–485. Retrieved 7 August 2013. 
  2. ^ a b c d e f g h Haire, Richard G. (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1. 
  3. ^ a b Bonchev, Danail; Kamenska, Verginia (1981). "Predicting the Properties of the 113–120 Transactinide Elements". J. Phys. Chem. 85: 1177–1186. 
  4. ^ a b Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry 21: 89–144. doi:10.1007/BFb0116498. Retrieved 4 October 2013. 
  5. ^ a b Düllmann, Christoph E. and the TASCA E119 collaboration. Search for element 119, 11th Workshop on Recoil Separator for Superheavy Element Chemistry, GSI Darmstadt, Germany, September 14, 2012.
  6. ^ Lougheed, R.; Landrum, J.; Hulet, E.; Wild, J.; Dougan, R.; Dougan, A.; Gäggeler, H.; Schädel, M.; Moody, K. (1985). "Search for superheavy elements using 48Ca + 254Esg reaction". Physical Reviews C 32 (5): 1760–1763. Bibcode:1985PhRvC..32.1760L. doi:10.1103/PhysRevC.32.1760. 
  7. ^ Modern alchemy: Turning a line, The Economist, May 12, 2012.
  8. ^ Düllmann, Christoph E. (October 20, 2011). Superheavy Element Research: News from GSI and Mainz. Johannes Gutenberg University Mainz; GSI Helmholtzzentrum für Schwerionenforschung GmbH; Darmstadt Helmholtz Institute Mainz.
  9. ^ Chowdhury, P. Roy; Samanta, C. and Basu, D. N. (2007). "Predictions of alpha decay half lives of heavy and superheavy elements". Nucl. Phys. A 789: 142–154. arXiv:nucl-th/0703086. Bibcode:2007NuPhA.789..142S. doi:10.1016/j.nuclphysa.2007.04.001. 
  10. ^ Chowdhury, P. Roy; Samanta, C. and Basu, D. N. (2008). "Search for long lived heaviest nuclei beyond the valley of stability". Phys. Rev. C 77 (4): 044603. arXiv:0802.3837. Bibcode:2008PhRvC..77d4603C. doi:10.1103/PhysRevC.77.044603. 
  11. ^ Chowdhury, P. Roy; Samanta, C. and Basu, D. N. (2008). "Nuclear half-lives for α -radioactivity of elements with 100 ≤ Z ≤ 130". At. Data & Nucl. Data Tables 94 (6): 781–806. arXiv:0802.4161. Bibcode:2008ADNDT..94..781C. doi:10.1016/j.adt.2008.01.003. 
  12. ^ Feng, Z; Jin, G; Li, J; Scheid, W (2009). "Production of heavy and superheavy nuclei in massive fusion reactions". Nuclear Physics A 816: 33. arXiv:0803.1117. Bibcode:2009NuPhA.816...33F. doi:10.1016/j.nuclphysa.2008.11.003. 
  13. ^ Seaborg (c. 2006). "transuranium element (chemical element)". Encyclopædia Britannica. Retrieved 2010-03-16. 
Alkali metal Alkaline earth metal Super­actinide Eka-​super­actinide Lan­thanide Actinide Transition metal Other metal Metalloid Polyatomic nonmetal Diatomic nonmetal Noble gas
predicted predicted predicted predicted     predicted predicted predicted predicted predicted predicted