Ununennium

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Ununennium,  119Uue
General properties
Name, symbol ununennium, Uue
Pronunciation Listeni/n.nˈɛniəm/
oon-oon-EN-ee-əm
Alternative names element 119, eka-francium
Ununennium in the periodic table
Hydrogen (diatomic nonmetal)
Helium (noble gas)
Lithium (alkali metal)
Beryllium (alkaline earth metal)
Boron (metalloid)
Carbon (polyatomic nonmetal)
Nitrogen (diatomic nonmetal)
Oxygen (diatomic nonmetal)
Fluorine (diatomic nonmetal)
Neon (noble gas)
Sodium (alkali metal)
Magnesium (alkaline earth metal)
Aluminium (post-transition metal)
Silicon (metalloid)
Phosphorus (polyatomic nonmetal)
Sulfur (polyatomic nonmetal)
Chlorine (diatomic nonmetal)
Argon (noble gas)
Potassium (alkali metal)
Calcium (alkaline earth metal)
Scandium (transition metal)
Titanium (transition metal)
Vanadium (transition metal)
Chromium (transition metal)
Manganese (transition metal)
Iron (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Copper (transition metal)
Zinc (transition metal)
Gallium (post-transition metal)
Germanium (metalloid)
Arsenic (metalloid)
Selenium (polyatomic nonmetal)
Bromine (diatomic nonmetal)
Krypton (noble gas)
Rubidium (alkali metal)
Strontium (alkaline earth metal)
Yttrium (transition metal)
Zirconium (transition metal)
Niobium (transition metal)
Molybdenum (transition metal)
Technetium (transition metal)
Ruthenium (transition metal)
Rhodium (transition metal)
Palladium (transition metal)
Silver (transition metal)
Cadmium (transition metal)
Indium (post-transition metal)
Tin (post-transition metal)
Antimony (metalloid)
Tellurium (metalloid)
Iodine (diatomic nonmetal)
Xenon (noble gas)
Caesium (alkali metal)
Barium (alkaline earth metal)
Lanthanum (lanthanide)
Cerium (lanthanide)
Praseodymium (lanthanide)
Neodymium (lanthanide)
Promethium (lanthanide)
Samarium (lanthanide)
Europium (lanthanide)
Gadolinium (lanthanide)
Terbium (lanthanide)
Dysprosium (lanthanide)
Holmium (lanthanide)
Erbium (lanthanide)
Thulium (lanthanide)
Ytterbium (lanthanide)
Lutetium (lanthanide)
Hafnium (transition metal)
Tantalum (transition metal)
Tungsten (transition metal)
Rhenium (transition metal)
Osmium (transition metal)
Iridium (transition metal)
Platinum (transition metal)
Gold (transition metal)
Mercury (transition metal)
Thallium (post-transition metal)
Lead (post-transition metal)
Bismuth (post-transition metal)
Polonium (post-transition metal)
Astatine (metalloid)
Radon (noble gas)
Francium (alkali metal)
Radium (alkaline earth metal)
Actinium (actinide)
Thorium (actinide)
Protactinium (actinide)
Uranium (actinide)
Neptunium (actinide)
Plutonium (actinide)
Americium (actinide)
Curium (actinide)
Berkelium (actinide)
Californium (actinide)
Einsteinium (actinide)
Fermium (actinide)
Mendelevium (actinide)
Nobelium (actinide)
Lawrencium (actinide)
Rutherfordium (transition metal)
Dubnium (transition metal)
Seaborgium (transition metal)
Bohrium (transition metal)
Hassium (transition metal)
Meitnerium (transition metal (predicted))
Darmstadtium (transition metal (predicted))
Roentgenium (transition metal (predicted))
Copernicium (transition metal)
Ununtrium (post-transition metal (predicted))
Flerovium (post-transition metal)
Ununpentium (post-transition metal (predicted))
Livermorium (post-transition metal (predicted))
Ununseptium (metalloid (predicted))
Ununoctium (noble gas (predicted))
Ununennium (alkali metal (predicted))
Unbinilium (alkaline earth metal (predicted))
Unquadunium (superactinide (predicted))
Unquadbium (superactinide (predicted))
Unquadtrium (superactinide (predicted))
Unquadquadium (superactinide (predicted))
Unquadpentium (superactinide (predicted))
Unquadhexium (superactinide (predicted))
Unquadseptium (superactinide (predicted))
Unquadoctium (superactinide (predicted))
Unquadennium (superactinide (predicted))
Unpentnilium (superactinide (predicted))
Unpentunium (superactinide (predicted))
Unpentbium (superactinide (predicted))
Unpenttrium (superactinide (predicted))
Unpentquadium (superactinide (predicted))
Unpentpentium (superactinide (predicted))
Unpenthexium (transition metal (predicted))
Unpentseptium (transition metal (predicted))
Unpentoctium (transition metal (predicted))
Unpentennium (transition metal (predicted))
Unhexnilium (transition metal (predicted))
Unhexunium (transition metal (predicted))
Unhexbium (transition metal (predicted))
Unhextrium (transition metal (predicted))
Unhexquadium (transition metal (predicted))
Unhexpentium (alkali metal (predicted))
Unhexhexium (alkaline earth metal (predicted))
Unhexseptium (post-transition metal (predicted))
Unhexoctium (post-transition metal (predicted))
Unhexennium (post-transition metal (predicted))
Unseptnilium (post-transition metal (predicted))
Unseptunium (diatomic nonmetal (predicted))
Unseptbium (noble gas (predicted))
Unbiunium (superactinide (predicted))
Unbibium (superactinide (predicted))
Unbitrium (superactinide (predicted))
Unbiquadium (superactinide (predicted))
Unbipentium (superactinide (predicted))
Unbihexium (superactinide (predicted))
Unbiseptium (superactinide (predicted))
Unbioctium (superactinide (predicted))
Unbiennium (superactinide (predicted))
Untrinilium (superactinide (predicted))
Untriunium (superactinide (predicted))
Untribium (superactinide (predicted))
Untritrium (superactinide (predicted))
Untriquadium (superactinide (predicted))
Untripentium (superactinide (predicted))
Untrihexium (superactinide (predicted))
Untriseptium (superactinide (predicted))
Untrioctium (superactinide (predicted))
Untriennium (superactinide (predicted))
Unquadnilium (superactinide (predicted))
Unsepttrium (eka-superactinide (predicted))
Unseptquadium (eka-superactinide (predicted))
Unseptpentium (eka-superactinide (predicted))
Unsepthexium (eka-superactinide (predicted))
Unseptseptium (eka-superactinide (predicted))
Unseptoctium (eka-superactinide (predicted))
Unseptennium (eka-superactinide (predicted))
Unoctnilium (eka-superactinide (predicted))
Unoctunium (eka-superactinide (predicted))
Unoctbium (eka-superactinide (predicted))
Unocttrium (eka-superactinide (predicted))
Unoctquadium (eka-superactinide (predicted))
Fr

Uue

(Uhp)
ununoctiumununenniumunbinilium
Atomic number 119
Standard atomic weight [315] (predicted)[1]
Element category unknown, but probably an alkali metal
Group, block group 1 (alkali metals), s-block
Period period 8
Electron configuration [Uuo] 8s1 (predicted)[2]
per shell 2, 8, 18, 32, 32, 18, 8, 1 (predicted)
Physical properties
Phase unknown (could be solid or liquid)[2]
Melting point 273–303 K ​(0–30 °C, ​32–86 °F) (predicted)[2]
Boiling point 903 K ​(630 °C, ​1166 °F) (predicted)[1]
Density (near r.t.) 3 g·cm−3 (predicted)[2] (at 0 °C, 101.325 kPa)
Heat of fusion 2.01–2.05 kJ·mol−1 (extrapolated)[3]
Atomic properties
Oxidation states 1, 3(predicted)[2]
Ionization energies 1st: 463.1 kJ·mol−1
2nd: 1698.1 kJ·mol−1 (predicted)[4]
Atomic radius empirical: 240 pm (predicted)[2]
Covalent radius 263–281 pm (extrapolated)[3]
History
Naming IUPAC systematic element name
Most stable isotopes
Main article: Isotopes of ununennium
iso NA half-life DM DE (MeV) DP
294Uue (predicted)[2] syn ~1–10 μs α 290Uus
295Uue (predicted)[5] syn 20 μs α 12.38 291Uus
296Uue (predicted)[5] syn 12 μs α 12.48 292Uus
· references

Ununennium, also known as eka-francium or simply element 119, is the chemical element with atomic number 119 and symbol Uue. Ununennium and Uue are the temporary systematic IUPAC name and symbol, until a permanent name is decided upon. In the periodic table of the elements, it is expected to be an s-block element, an alkali metal, and the first element in the eighth period.

Ununennium is the first element that has not yet been synthesized. To date, all attempts to synthesize this element have been unsuccessful. Its position as the seventh alkali metal suggests that it would have similar properties to the alkali metals, lithium, sodium, potassium, rubidium, caesium, and francium; however, relativistic effects may cause some of its properties to differ from those expected from a straight application of periodic trends. For example, ununennium is expected to be less reactive than caesium and francium and be closer in behavior to potassium or rubidium, and while it should show the characteristic +1 oxidation state of the alkali metals, it is also predicted to show the +3 oxidation state unknown in any other alkali metal.

History[edit]

Ununennium and unbinilium are the first elements that have not yet been synthesized, and attempts to synthesize them would push the limits of current technology, due to the decreasing cross sections of the production reactions and their probably short half-lives.[6] Previously, important help (characterized as "silver bullets") in the synthesis of superheavy elements came from the deformed nuclear shells around hassium-270 which increased the stability of surrounding nuclei, and the existence of the neutron-rich isotope calcium-48 which could thus be used as a projectile to produce more neutron-rich isotopes of superheavy elements. However, using calcium-48 to synthesize ununennium would require a target of einsteinium-253 or -254, which while not impossible is very difficult. To more practically produce further superheavy elements, projectiles heavier than 48Ca are needed.[7]

The synthesis of ununennium was attempted in 1985 by bombarding a target of einsteinium-254 with calcium-48 ions at the superHILAC accelerator at Berkeley, California:

\,^{254}_{99}\mathrm{Es} + \,^{48}_{20}\mathrm{Ca} \to \,^{302}_{119}\mathrm{Uue} ^{*}

No atoms were identified, leading to a limiting yield of 300 nb.[8] Later calculations suggest that the yield of the 3n reaction (which would result in 299Uue and three neutrons as products) would be 0.5 pb.[9]

As of May 2012, plans are under way to attempt to synthesize the isotopes 295Uue and 296Uue by bombarding a target of berkelium with titanium at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany:[10][11]

\,^{249}_{97}\mathrm{Bk} + \,^{50}_{22}\mathrm{Ti} \to \,^{296}_{119}\mathrm{Uue} \,+3\,^{1}_{0}\mathrm{n}
\,^{249}_{97}\mathrm{Bk} + \,^{50}_{22}\mathrm{Ti} \to \,^{295}_{119}\mathrm{Uue} \,+4\,^{1}_{0}\mathrm{n}

No atoms were identified, leading to a yielding limit of 70 fb.[12]

Isotopes[edit]

The alpha-decay half-lives of 1700 nuclei with 100 ≤ Z ≤ 130 have been calculated in a quantum tunneling model with alpha-decay Q-values from different mass estimates.[13][14][15] The alpha-decay half-lives predicted for 291–307Uue are of the order of micro-seconds. The highest value of the alpha-decay half-life predicted in the quantum tunneling model with the mass estimates from a macroscopic-microscopic model is ~485 microseconds for the isotope 294Uue. For 302Uue it is ~163 microseconds.

Predicted properties[edit]

Being the first period 8 element, ununennium is predicted to be the next alkali metal after francium and behave much like their lighter congeners; however, it is also predicted to differ from the lighter alkali metals in some properties.[2] Its chemistry is predicted to be closer to that of potassium[16] or rubidium[2] instead of caesium or francium. This is unusual as periodic trends, ignoring relativistic effects would predict ununennium to be even more reactive than caesium and francium. This lowered reactivity is due to the relativistic stabilisation of ununennium's valence electron, increasing ununennium's first ionisation energy and decreasing the metallic and ionic radii;[16] this effect is already seen for francium.[2] The relativistic stabilisation of the 8s orbital also increases ununennium's electron affinity far beyond that of caesium and francium; indeed, ununennium is expected to have an electron affinity higher than all the alkali metals lighter than it. Relativistic effects also cause a very large drop in the polarisability of ununennium.[2] On the other hand, ununennium is predicted to continue the trend of melting points decreasing going down the group, being expected to have a melting point between 0 °C and 30 °C.[4]

The stabilisation of ununennium's valence electron and thus the contraction of the 8s orbital cause its atomic radius to be lowered to 240 pm,[2] very close to that of rubidium (247 pm), so that the chemistry of ununennium in the +1 oxidation state should be more similar to the chemistry of rubidium than to that of francium. On the other hand, the ionic radius of the Uue+ ion is predicted to be larger than that of Rb+, because the 7p orbitals are destabilised and are thus larger than the p-orbitals of the lower shells. Ununennium may also show the +3 oxidation state,[2] which is not seen in any other alkali metal,[17] in addition to the +1 oxidation state that is characteristic of the other alkali metals and is also the main oxidation state of all the known alkali metals: this is because of the destabilisation and expansion of the 7p3/2 spinor, causing its outermost electrons to have a lower ionisation energy than what would otherwise be expected.[17][2] Indeed, many ununennium compounds are expected to have a large covalent character, due to the involvement of the 7p3/2 electrons in the bonding: this effect is also seen to a lesser extent in francium.[18]

Empirical (Na–Cs, Mg–Ra) and predicted (Fr–Uhp, Ubn–Uhh) atomic radius of the alkali and alkaline earth metals from the third to the ninth period, measured in angstroms[2][19]
Empirical (Na–Fr) and predicted (Uue) electron affinity of the alkali metals from the third to the eighth period, measured in electron volts[2][19]
Empirical (Na–Fr, Mg–Ra) and predicted (Uue–Uhp, Ubn–Uhh) ionisation energy of the alkali and alkaline earth metals from the third to the ninth period, measured in electron volts[2][19]

See also[edit]

References[edit]

  1. ^ a b Fricke, B.; Waber, J. T. (1971). "Theoretical Predictions of the Chemistry of Superheavy Elements". Actinides Reviews 1: 433–485. Retrieved 7 August 2013. 
  2. ^ a b c d e f g h i j k l m n o p q Haire, Richard G. (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1. 
  3. ^ a b Bonchev, Danail; Kamenska, Verginia (1981). "Predicting the Properties of the 113–120 Transactinide Elements". J. Phys. Chem. 85: 1177–1186. doi:10.1021/j150609a021. 
  4. ^ a b Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry 21: 89–144. doi:10.1007/BFb0116498. Retrieved 4 October 2013. 
  5. ^ a b Hofmann, Sigurd (2013). Overview and Perspectives of SHE Research at GSI SHIP. p. 23–32. doi:10.1007/978-3-319-00047-3. 
  6. ^ Future of superheavy element research: Which nuclei could be synthesized within the next few years?
  7. ^ [1]
  8. ^ Lougheed, R.; Landrum, J.; Hulet, E.; Wild, J.; Dougan, R.; Dougan, A.; Gäggeler, H.; Schädel, M.; Moody, K. (1985). "Search for superheavy elements using 48Ca + 254Esg reaction". Physical Reviews C 32 (5): 1760–1763. Bibcode:1985PhRvC..32.1760L. doi:10.1103/PhysRevC.32.1760. 
  9. ^ Feng, Z; Jin, G; Li, J; Scheid, W (2009). "Production of heavy and superheavy nuclei in massive fusion reactions". Nuclear Physics A 816: 33. arXiv:0803.1117. Bibcode:2009NuPhA.816...33F. doi:10.1016/j.nuclphysa.2008.11.003. 
  10. ^ Modern alchemy: Turning a line, The Economist, May 12, 2012.
  11. ^ Düllmann, Christoph E. (October 20, 2011). Superheavy Element Research: News from GSI and Mainz. Johannes Gutenberg University Mainz; GSI Helmholtzzentrum für Schwerionenforschung GmbH; Darmstadt Helmholtz Institute Mainz.
  12. ^ http://asrc.jaea.go.jp/soshiki/gr/chiba_gr/workshop3/&Yakushev.pdf
  13. ^ Chowdhury, P. Roy; Samanta, C. and Basu, D. N. (2007). "Predictions of alpha decay half lives of heavy and superheavy elements". Nucl. Phys. A 789: 142–154. arXiv:nucl-th/0703086. Bibcode:2007NuPhA.789..142S. doi:10.1016/j.nuclphysa.2007.04.001. 
  14. ^ Chowdhury, P. Roy; Samanta, C. and Basu, D. N. (2008). "Search for long lived heaviest nuclei beyond the valley of stability". Phys. Rev. C 77 (4): 044603. arXiv:0802.3837. Bibcode:2008PhRvC..77d4603C. doi:10.1103/PhysRevC.77.044603. 
  15. ^ Chowdhury, P. Roy; Samanta, C. and Basu, D. N. (2008). "Nuclear half-lives for α -radioactivity of elements with 100 ≤ Z ≤ 130". At. Data & Nucl. Data Tables 94 (6): 781–806. arXiv:0802.4161. Bibcode:2008ADNDT..94..781C. doi:10.1016/j.adt.2008.01.003. 
  16. ^ a b Seaborg (c. 2006). "transuranium element (chemical element)". Encyclopædia Britannica. Retrieved 2010-03-16. 
  17. ^ a b Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 0080379419. 
  18. ^ Thayer, John S. (2010). Chemistry of heavier main group elements. pp. 81, 84. doi:10.1007/9781402099755_2. 
  19. ^ a b c Pyykkö, Pekka (2011). "A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions". Physical Chemistry Chemical Physics 13 (1): 161–8. Bibcode:2011PCCP...13..161P. doi:10.1039/c0cp01575j. PMID 20967377. 
Legend
Alkali metal Alkaline earth metal Super­actinide Eka-​super­actinide Lan­thanide Actinide Transition metal Post-​transition metal Metalloid Polyatomic nonmetal Diatomic nonmetal Noble gas
predicted predicted predicted predicted     predicted predicted predicted predicted predicted predicted