# User:Crasshopper

I started editing Wikipedia in 2005 and average 100 edits/year.

I'm an American living in Indiana.

I started or revived the following pages:

Wikipedia:Babel
de-1 Dieser Benutzer hat grundlegende Deutschkenntnisse.
en This user is a native speaker of English.
es-2 Este usuario puede contribuir con un nivel intermedio de español.
zh-1 該用戶能以基本的中文進行交流。 该用户能以基本的中文进行交流。

Other pages I started:

• John Challifour
• Max Zorn - not really but I contributed an interesting tidbit about his guitar-playing and once when he got hit by a bus.

Unusual articles

## The rest




My favorite number is $\sqrt{2}$.

Curriculum Vitæ

## Equations

$\max \sum_{t=1}^\infty \delta^t \cdot u(w_t)$

$L = \sum_{t=0}^\infty \sum_{z^t} \beta^t \cdot U(c_t(z^t) \cdot \pi_t (z^t)) + \sum_{t=0}^\infty \sum_{z^t} \lambda_t z^t \cdot \{ z^t \cdot f(k_t (z^{t-1} )) + (1 - \delta) \cdot k_t (z^{t-1}) - c_t (z^t) + k_{t+1} (z^t) \}$

$\ = \mathrm{wage} \cdot (1 - \mathrm{leisure\ time} )$

⋉ Rubik's Cube is $\mathbb{Z}^7_3 \times \mathbb{Z}^{11}_2 \rtimes ((A_8 \times A_{12}) \rtimes \mathbb{Z}_2)$

<img src="http://latex.codecogs.com/gif.latex?\large \dpi{120} \bg_white \Huge{\text{ Determinant }} \ \Normal{\det |\mathcal{M}|} \\ \\ |\mathcal{M}| \Large{\text{ is }} \left| \; \begin{pmatrix} &a \leadsto a &&& a \leadsto b& \\ \\ &b \leadsto a &&& b \leadsto b& \end{pmatrix} \; \right|" title="\large \dpi{120} \bg_white \Huge{\text{ Determinant }} \ \Normal{\det |\mathcal{M}|} \\ \\ |\mathcal{M}| \Large{\text{ is }} \left| \; \begin{pmatrix} &a \leadsto a &&& a \leadsto b& \\ \\ &b \leadsto a &&& b \leadsto b& \end{pmatrix} \; \right|" />

$\begin{matrix} 100 \, ^{\circ} \rm{F} & \longrightarrow & 311 \, \rm{K} \\ \\ && \downarrow \\ \\ -180 \, ^{\circ} \rm{F} & \longleftarrow & 155 \, ^1\!\!/\!_2 \, \rm{K} \end{matrix}$

$\| \text{song} \| = \int \text{compression wave}$

$\gamma \ \overset{\mathrm{def}}= \ {1 \over \ \sqrt[2]{ \; 1 \; - \; ( \, {v \over c} \, ) \, ^2 } \ }$

$\gamma \ \overset{\mathrm{def}}= \ {1 \over \ \sqrt[2]{ 1 \; - \; ( \, \textrm{\%\ of\ speed\ of\ light} \, )\, ^2 } \ }$

${\color{red}x'} \gets \gamma \cdot {\color{red} x} \; + \; \imath \; \gamma \; \cdot \; {v \over c} \; \cdot \; t \qquad = \ \frac{{\color{red} x} \; + \; ^1\!\!/\!_4 \circlearrowleft \; \cdot \; \mathbf{\%} \; \cdot \; t}{ \mathrm{NORM\ 1} }$

$t' \gets \gamma \cdot t \; - \; \imath \; \gamma \; \cdot \; {v \over c} \; \cdot \; {\color{red} x} \qquad = \ \frac{t \; + \; ^1\!\!/\!_4 \circlearrowright \; \cdot \; \mathbf{\%} \; \cdot \; t}{ \mathrm{NORM\ 1} }$