From Wikipedia, the free encyclopedia
Jump to: navigation, search

BigDFT is an open-source program for materials science, distributed under the GNU General Public License. BigDFT implements density functional theory, using a Daubechies wavelet basis set and pseudopotentials, to compute the electronic density of materials ranging from molecules to surfaces to solids. It is developed collaboratively by researchers throughout the world.[1]

Developer(s) Commissariat à l'énergie atomique.
Stable release 1.6.0
Operating system Cross-platform
Available in Fortran
License GNU GPL v2
Website [1]


BigDFT implements density functional theory by solving the Kohn-Sham equations describing the electrons in a material, expanded in a Daubechies basis set and using a self-consistent direct minimization or Davidson diagonalisation methods to determine the energy minimum. Computational efficiency is achieved through the use of fast short convolutions and pseudopotentials to describe core electrons. In addition to total energy, forces and stresses are also calculated so that geometry optimizations and ab initio molecular dynamics may be carried out.

The Daubechies wavelet basis sets are an orthogonal systematic basis set as plane wave basis set but has the great advantage to allow adapted mesh with different levels of resolutions (see multi-resolution analysis). Interpolating scaling functions are used also to solve the Poisson's equation[2][3] with different boundary conditions as isolated of surface systems.

BigDFT was among the first massively parallel density functional theory codes which benefited from graphics processing units (GPU)[4].

See also[edit]


  1. ^ Daubechies wavelets as a basis set for density functional pseudopotential calculations, L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S. A. Ghasemi, A. Willand, D. Caliste, O. Zilberberg, M. Rayson, A. Bergman, R. Schneider, Journal of Chemical Physics 129, 014109 (2008)
  2. ^ Efficient solution of Poisson's equation with free boundary conditions, L. Genovese, T. Deutsch, A. Neelov, S. Goedecker, G. Beylkin, Journal of Chemical Physics, 125, 074105 (2006)
  3. ^ Efficient and accurate three-dimensional Poisson solver for surface problems, L. Genovese, T. Deutsch, S. Goedecker, Journal of Chemical Physics, 127, 054704 (2007)
  4. ^ Density Functional Theory calculation on many-cores hybrid CPU-GPU architectures in hybrid architecture, L. Genovese, M. Ospici, T. Deutsch, J.-F. Méhaut, A. Neelov, S. Goedecker, Journal of Chemical Physics 131, 034103 (2009)

External links[edit]

Category:Density functional theory Category:Free physics software Category:Computational chemistry software