User talk:R8R Gtrs

From Wikipedia, the free encyclopedia
Jump to: navigation, search


I am here, keeping an eye on things, but am not yet completely free from real life difficulties, thus not yet ready to spend any significant amounts of time on Wiki.

If I write to you, I'll put your talk page on my watchlist.

If you write to me, then I'll answer in here.

I prefer to keep the discussion in one place and not scattered across various pages.
I can ping you or discuss anywhere if asked, but by default I will follow the rules above.


Metalloid FAC[edit]

Hi R8R

I've renominated it here. A few people watching this time: John; Dirac66; 99of9. Should be good I hope. Sandbh (talk) 12:06, 9 March 2014 (UTC)

on 6d electrons being used for chem in the 7p elements[edit]

I finally found a source. Apparently it's only 113 and Fl: while 113's +2, +3, and +5 states should be quite stable (the last only in UutF
6
), apparently Fl's +4 and +6 (really!) would only be stable in fluorides (FlO2 and FlH4 would spontaneously decompose.

There's even an old study by Jørgensen and Haissinsky predicting the Fl would behave like an alkaline earth metal: Fricke sounds sceptical already in 1974, noting that it's very far from Keller's results. Double sharp (talk) 15:37, 5 July 2014 (UTC)

Well, I've read the part of the Fricke '74 paper that discusses this. Note the +6 state is not said to exist, it just might exist: "Thus, one cannot exclude the possibility that a volatile hexafluoride might form." (Which I would reflect in the article of flerovium, if I were you.) Still, it's interesting, given that already the +4 state won't be easy to reach; but we can't draw a conclusion whether it exists or not. Still, there's a lot of time to pass before anyone can check this experimentally (or at least write a more up-to-date document :) --R8R (talk) 16:34, 5 July 2014 (UTC)
Yes, I wrote it as just potential/possible, although I accidentally forgot to do so in the part I copy-pasted and changed from ununtrium, which I've corrected. Double sharp (talk) 03:08, 6 July 2014 (UTC)

Also, do you have any advice on how I should write on the nuclear properties of flerovium? That's the last section I need before I put in a GAN. Double sharp (talk) 16:20, 6 July 2014 (UTC)

Sure. Have a look at how I wrote the Ununseptium#Nuclear stability and isotopes section and the Ununoctium#Nucleus stability and isotopes section I based it on. Because really, that's what someone would want to read. Rewrite what you have now to make it more readable to a normal person not aware of these nucleus shells and stuff, without trying to cut the subsection into subsubsections. Let's look at the current flerovium section and analyze what info we have today would be useful for that.
  • Chronology of isotope discovery -- of what the notability is this? why not mention every time they made at least a single nucleus of Fl? What does it add? If it adds anything important, you need sources for each isotope. Even if you have them (but I think it's reasonable to give up now), then it's still a better idea to have it as a side table. It's not too monumentally important.
  • Retracted isotopes -- well, that's more of a history thing, and it's not notable there, therefore for sure not notable here.
  • Nuclear isomerism -- Bwah. Sure, it does have its facts, but they're a close detail and this is an overview article.
  • Decay characteristics -- theory supports reality? really? (The second sentence, I don't mind having it. See if you need it after the rewriting.)
  • In search for the island of stability: 298Fl -- this is good and notable, just polish the prose and remove too much text (keep in mind average readers). This might (or might not) deserve its separate subsubsection, you'll see after you rewrite the thing (but all of the other text goes straight under the subheader, with no subsubheaders).
  • Evidence for Z = 114 closed proton shell -- merge with the above
  • Difficulty of synthesis of 298Fl -- deserves a mention in the section you got after merging the two above, but not more.
After that, add introductory info, see first para of the element 118 article. That's how I would write it having normal people in mind. This is not a super-specialized article, so that's how I would do it, and that's my advice.
Also: we had a talk at WT:ELEM about such article titles (element 118 vs ununoctium), and the first version was adored (but then I suddenly disappeared from Wiki (and uni) for a few months and could not do what I wanted to). Now would you help me make such titles real, and, after that, get the through MOS if I tell you the details?--R8R (talk) 22:53, 7 July 2014 (UTC)
OK, I started a new thread on WT:ELEM. Maybe we should do an WP:RM for 113, 115, 117, 118, 119, 120, 121, 122, 124, 126, 127 (I think that's all the unnamed elements articles we have: maybe 125 is notable though, I did find a paper discussing chemistry e.g. +6 as main oxidation state) to get more feedback from non-project members, though. It should be stressed there, I think, that we are not proposing to suppress the existence of names such as "ununtrium" until the element gets named; we just want to make "element 113" the main name, with "ununtrium" listed as an alternative in the lede. Double sharp (talk) 14:56, 8 July 2014 (UTC)
121, 122, 124, 126, 127 no longer have articles: they've been merged into extended periodic table. Double sharp (talk) 07:27, 13 July 2014 (UTC)

Back in August 2013, when I was thinking about how to accomplish this, I thought that a good idea would be to accent mainly on the island of stability, and get rid of the rest. Then I would mention Fl's significant position in the middle, the approach to the island, the difficulty of getting to 298Fl, etc., etc. We appear to agree; always a good sign. :-) Double sharp (talk) 13:12, 13 July 2014 (UTC)

IUPAC report on SHE chemistry[edit]

Do you know where I can find the promised Part II (to cover Bh and Hs) of this? Double sharp (talk) 08:38, 9 July 2014 (UTC)

As for me, I haven't seen it. Moreover, I'm not sure it exists. At least, the IUPAC site doesn't have it (at least, I was unable to find it).--R8R (talk) 11:04, 9 July 2014 (UTC)
Neither have I. I don't know if it was ever written: I think I searched all over the IUPAC site for it two years ago. Double sharp (talk) 12:12, 9 July 2014 (UTC)

neptunium[edit]

I'd like to take it to FA later: do you have any comments? Double sharp (talk) 07:12, 13 July 2014 (UTC)

Sure, but right now I've got too little time on my hands plus an FAC which may inflame at any time. But if you contact me once again in August, when the FAC is over, I'll see if I can help (actually, I hope I won't forget myself, but do that just to be sure).--R8R (talk) 16:37, 13 July 2014 (UTC)

alkali metal[edit]

I finally started the history section. :-P Doing so also alerted me that I forgot to mention Cu, Ag, and Au under "Other similar substances", so I've rectified that omission (this is seen in the group IB in 8-column tables).

(Is there a name analogous to pnictides, chalcogenides, and halides for the group 14 elements?)

Previously the "Characteristics" section seemed heavily bloated, so I split it up. Now the sections seem more even.

I've also removed the headers under "Discovery". Next step will be to check how Greenwood does it, as you suggested, and see where the term "alkali metal" fits in. After the discovery, doesn't it spread somewhat into productions and applications? Double sharp (talk) 09:04, 17 July 2014 (UTC)

I checked how Greenwood does it: Na+K, Li, Rb+Cs, Fr. So I structured in that way. Not sure where "alkali metal" fits in, though: I don't even know who came up with the term. I merged it into the paragraph on top, though.
Also mentioned Mendeleev's group IA/IB. Maybe I went too much into Cu/Ag/Au, those should perhaps go into the "other similar substances", but it is there now. Important thing is that the medium-long form tears IA and IB far apart. I also mentioned Mendeleev's indecisiveness about whether to have a IB, or put those in VIII in "other similar substances". But maybe this is more for group 11. Double sharp (talk) 13:40, 20 July 2014 (UTC)

I checked the section briefly. Seems mostly fine, even though I would suggest placing the periodic table info between Rb+Cs and Fr, to keep things in chronological order.

After 1869, Dmitri Mendeleev proposed his periodic table -- You don't mention the difference between IA and IB before you talk about them (not even what they are), otherwise copper group info in that section is fine, I think.

I haven't noticed any other mistakes too bad after a brief look.

Also, I wouldn't even use the name "pnictogen" too often, it's not too heavily used (compare: "halogen" is extremely common). I can say that when talking to you, because you would understand me, and vice versa. But in a normal text... heavily depends on context.--R8R (talk) 14:40, 20 July 2014 (UTC)

Better? Talked about IA and IB when the Cu group is first mentioned. Though I'm not sure if I'm right, I think it's to parallel with the prominence of the +1 state in the Li and Cu groups, right?
Placed PT info between Rb/Cs and Fr. Also placed Döbereiner chronologically, between Li and Rb/Cs. Double sharp (talk) 15:03, 20 July 2014 (UTC)
Yeah, pnictogen is obscure (it's not in my autocorrect, and neither is chalcogen, though halogen is), but after a certain point it gets tiring calling them group 15 element compounds or nitrogen group compounds (and the latter is ambiguous) and pnictide has greater specificity (i.e. P4O10 and K3P are both group 15 element compounds, but only the latter is a pnictide). Maybe this is a lame reason, though. I really should explain what pnictogen and chalcogen mean first in the article, but I'm still thinking of a good place to do so. Argh. Double sharp (talk) 14:20, 3 September 2014 (UTC)

Do-see-do (F FAC4)[edit]

Mail-message-new.svg
Hello, R8R Gtrs. Please check your email – you've got mail!
It may take a few minutes from the time the email is sent for it to show up in your inbox. You can remove this notice at any time by removing the {{You've got mail}} or {{YGM}} template.

You live in Germany, I live in Singapore. Two very opposite ends of the world, in other words. Which gives me this idea for fluorine's FAC4: every day I resolve some issues and leave the others, you fix these unresolved issues and leave some for me, cycle repeats. Sandbh and the other members of WT:ELEM can only facilitate this process. Parcly Taxel 01:48, 20 July 2014 (UTC)

That's a plan I can agree with; let's do it.--R8R (talk) 11:25, 20 July 2014 (UTC)
R8R, I thought you lived in Moscow? Double sharp (talk) 07:47, 20 July 2014 (UTC)
Yes, I live in Moscow; it's, however, still in Europe, so it's not a too great mistake.--R8R (talk) 11:25, 20 July 2014 (UTC)

You asked me why you were to blame for the refs on F? Well it's because you and Sandbh were the two principal ref-finders for the article. But alas, no consistency check was performed, so we have all the ref issues to fix. Parcly Taxel 05:16, 27 July 2014 (UTC)

Talkback[edit]

Nuvola apps edu languages.svg
Hello, R8R Gtrs. You have new messages at Double sharp's talk page.
You can remove this notice at any time by removing the {{Talkback}} or {{Tb}} template.

Double sharp (talk) 13:27, 31 July 2014 (UTC)

Your technical move request for high-numbered elements[edit]

Please see Talk:Ununtrium#Requested move 2 August 2014. I converted your technical request into a full move discussion due to a guess that this may be controversial. It is helpful that some discussion has already occurred at WT:ELEM but I didn't notice any closure there. Thanks, EdJohnston (talk) 03:42, 2 August 2014 (UTC)

Lanthanides' +3 state[edit]

(Postscript to #extreme oxidation states: tetroxides above)

Fricke and Waber in their 1971 paper writes on p.438: "...in lanthanum, a d-electronic state is occupied before the 4f shell starts to fill. But although the atomic configuration of most other lanthanides is pure 4fn6s2, they form mainly trivalent ions because in the +2 ionization state, the configuration is 4fn−15d and the 5d electron can readily be oxidized." A simple explanation if there ever was one! :-) Double sharp (talk) 18:03, 6 August 2014 (UTC)

From rereading Fricke's paper[edit]

The way he describes E164 as a noble metal and compares it with Pd and Pt, compares the 7d transition metals to the groups two before the ones he places them (he calls E157 a IIIB element but places it in VB, and so forth), and how he says chemically E165 and E166 may be more IB and IIB than IA and IIA (the latter is suggested through physical and atomic properties), it makes me think that he could have chosen to present his table this way for a more chemical perspective:

Also, here's a cool link: [1]. And another: [2] Double sharp (talk) 18:45, 6 August 2014 (UTC)

Oh, and one more: [3].

I find Indelicato's statement that E173 is the end of the periodic table odd, given that he then goes on to say that it is not known yet precisely what happens when 1s dives into the negative continuum (which happens at E173). Probably it is best to just say in WP articles that the negative continuum thing happens at E173, while noting that it's not certain if this means the end of the line for the PT.

(For a practical chemist's point of view, the PT ends at Es and Fm anyway!) Double sharp (talk) 18:57, 6 August 2014 (UTC)

Mmmm. I still think the format used in the Dubna presentation is the easiest to use: 139's latest electron (i.e., the difference between electron shells of 139 and 138) is a 8p electron, so it would be the most convenient to look for it in the first 8p position. 157 is in the 8d1 position, so it all makes sense to me. (Also, I still think 171 is probably is a metalloid.) Also, can you clarify your point on 173? As I see it now, it is somewhat similar to non-Einstein thinking about what happens if you travel with the speed of light. He says, "the time stops. And you need infinite energy to do that. Oh, this is absurd and thus impossible" And everyone agreed. Opposition claiming we don't know that for sure and just saying the infinite energy thing happens at v=c is not mainstream (thus is not listened to). Correct me if I'm wrong about what you say.--R8R (talk) 22:58, 8 August 2014 (UTC)
Yes, the differentiating electron for E139 vs. E138 is 8p1/2; but then you get into all sorts of cans of worms with earlier elements (differentiating electron between La and Ba is 5d, as it is for the Gd/Eu and Lu/Yb pairs! But we can't have both in the position under Y.)
As for E157, isn't the valence electron configuration 7d3? If so then it should behave like group 3 elements. (This agrees with what Fricke and Pershina say, but not with what Pyykkö says. But then he predicts more valence electrons, not less.) I think the problem is the proximity of the orbitals again making placement in a simple table very problematic: after all E164 should have similarities to groups 10, 12, 14, and 18!
On E171 being a metalloid, I'm not so sure. Fricke et al. say in one paper that (171) is a hard base like Cl and in another that it is a soft base like I, IIRC. What clinched it for me was that they compared its multiplicity of oxidation states from −1 to +7 to the halogens, instead of to metals (many transition metals have similar or greater ranges, e.g. Re or Ir). But it is kind of unlikely that E170 is a PTM (they say the most common state is +6) and E171 has suddenly become a halogen. If it was like period 2 or period 3, then I'd expect E170 and maybe E169 or E168 to be more metalloidish or nonmetallic in character.
Walter Greiner seems mainstream (he wrote the paper with Fricke), and he says that E173 is not a limit. The 2010 RSC article even stated what he thinks happens for elements above E173, citing a book he wrote with Reinhardt in 2009: 1s would dive into the negative continuum, but things would stay bound (1s + negative-energy sea of electrons forming a bound ersonance) as long as it stays there (with some freaky things happening if it ever gets ionized, though). And if we say E173 is the last then it becomes problematic to work in Fricke and Penneman's predictions re E184 (which were restated as late as Pershina et al. 2006). From reading it, I think the jury is still out there, with some scientists on both sides. And then of course you have articles claiming that neutron stars are the real heaviest elements, and surely they have Z >> 173. :-P (That's not exactly mainstream: the previous stuff seems to be so, though.) Double sharp (talk) 19:32, 10 August 2014 (UTC)
I admit not having read this lengthy reply yet, but I am making it clear I haven't forgotten about it. Will reply in a week or so.--R8R (talk) 00:03, 18 August 2014 (UTC)
Okay, now it goes.
The Ba/La (or Eu/Gd, or No/Lr) pair is a lot different than the 138/139 one. The former is an exception to the rule following elements follow, the latter obeys the rule and not an exception for it.
Okay, let's assume 157's valence config is 7d3. One would therefore expect to find it under 6d3 in the PT -- in other words, in the group we call "group 5." However, three (and not five) valence electrons in group 5 are fine. Same works for 117, for example: it is not expected to use its 7s electrons for bonding. Yes, the table after element ~164 (or even 120) doesn't look too simple. Aufbau works in a new way, a more complicated one. We'll have to have faith and work out somehow -- and I'm just telling you my way out.
Yes, I'm looking at the 1975 paper (the link is for easier orientating), which I read before, thee he says 171- will be much like I-. I would be grateful if you showed me the link to the other paper. Comparison to halogens is easy, given it was and is expected to be in group 17, I believe that's the reason, it tells us not too much. 170 tells us being metalloid is the most probable option for 171, too.
I can't find that paper, and I remember it poorly. I must admit I was like, "I'll never use that anyway, nor am I learning the basics of that edge of physics," and thus never gave it a deep thought. (Calling neutron stars nuclei, I think, fails the whole idea of a nucleus, I don't think it's right to generalize the idea that way. That seems like cheating to me.)--R8R (talk) 21:17, 20 August 2014 (UTC)
Here is Fricke's other paper, where he compares 171 to Cl instead.
Am not completely sure if +6 being 170's main oxidation state means it's a post-transition metal, also: isn't that also true for some lighter chalcogens? Po is the only chemically characterized metallic chalcogen, and for it +6 isn't a main state anymore.
Here's the paper that calls neutron stars nuclei. But then gravity becomes the main force, not the strong force. I would expect radically different behaviour. Unsure about the choice of Z = 1138; is that because it would be the seventeenth noble gas if the Aufbau principle held that far? Double sharp (talk) 07:05, 21 August 2014 (UTC)
P.S. Oh and about Aufbau – AFAIK nobody has succeeded in deriving that rule ab initio. In K and Ca it predicts that 4s is lower in energy than 3d and hence should fill first: this is correct. But in Sc it predicts that 3d has now become the energetically favoured orbital. This is also OK, but then why are we assuming Ca's configuration of [Ar] 4s2 and adding a 3d electron to it? Shouldn't we be assuming Sc+'s configuration of [Ar] 3d1 4s1 and adding a 3d electron? In fact, why don't ALL three valence electrons just enter 3d and give [Ar] 3d3? The problem is that the energies have crossed. At Ar 4s is higher than 3d; at K and Ca the opposite is true; and at Sc it is back to 4s being higher than 3d. Relativistic ab initio methods can predict this for Sc: but it has to be done case-by-case for each Z, and to date AFAIK nobody has come up with a general rule that predicts everything. (Relativistic ab initio calculations fail to predict Cr, Ni, and Cu's anomalous configurations, if you're curious.) So I'm of the firm opinion that chemistry should be the main thing to look at, not electron configuration: placing more trust in the latter leads to absurdities like putting He with the alkaline earth metals and tearing group 10 apart (Ni is s2d8, Pd s0d10, and Pt s1d9!) I recommend this article by Scerri. Double sharp (talk) 16:59, 21 August 2014 (UTC)

Postcard from Mt FAC[edit]

Ziggurat of ur.jpg A ziggurat to mark the day you got there
Phtor your foundational work towards the promotion of fluorine to feature article
status. Much labour and well earned. Sandbh (talk) 05:37, 16 August 2014 (UTC)
Indeed, much work. Much more than I originally expected, being new to Wiki; still, I regret nothing. The last step would be a TFA (and I will give the star to TCO, he deserves it no less than I do, even if he never sees it); after that, I can easily conclude the most interesting part of this fascinating story would be over. Thanks for sharing this moment with me.--R8R (talk) 23:33, 17 August 2014 (UTC)
I should try to make something as good as that ziggurat in Autodesk Maya. Of course grats on the fluorine FA; certainly deserved, man. StringTheory11 (t • c) 21:47, 21 August 2014 (UTC)
Congrats for F, as well. Double sharp (talk) 07:56, 22 August 2014 (UTC)
(I don't know why, but I keep reading the "Mt" in the section title as meitnerium instead of "Mount". In fact at first I was wondering when you started working on Mt! Then I realized what it meant and laughed at my funny misinterpretation.) Double sharp (talk) 11:44, 8 September 2014 (UTC)
(I must say I didn't get it as well until I was explained :P Yeah, that was quite clear, I'll try not to repeat that miss)
Thank you very much; I will later try to repeat that success--R8R (talk) 20:58, 16 September 2014 (UTC)

Future plans[edit]

OK, I'll reserve Db for you.

(I did do some very preliminary research on it, and I realized this question, which I think you should probably want to answer in the article: who came up with the idea for the name "dubnium", and what's the reason for its acceptance? Neither the American (hahnium) nor Russian (nielsbohrium) proposal were used; the latter would be confusing with element 107, and the Americans already got Rf and Sg. Is this a IUPAC thing, or was it originally proposed for another element by a team, not IUPAC? Joliotium and rutherfordium were proposed by Dubna for elements 102 and 103, and IUPAC proposed flerovium for element 102.)

Re your other goals: yes, At and E117 are close, and as they are radioactive I feel more able to work with you to put in the final touches like I helped earlier with E117. Al is important: might want to ask Stone and G. C. Hood for a collaboration, who I understand wanted to GA it a short time ago.

Gold and silver are scary. I'd rather do the former, but both are OK. But I think, for this we need to get everybody to say they are willing. It can get almost too scary for one person working alone. That's the problem I kind of have with iron. Might want to ask Thingg again after I worked with them on Np. Double sharp (talk) 20:21, 20 August 2014 (UTC)

Thanks for the tip about the name (that's a good tip, really; I don't know the answer, will google sometime). But I intend to promote At and 117 first, so it would take some time before I start work on that (not to mention I don't have too much spare time).
I have a nice book on aluminum, which can be helpful for many aspects not related directly to chemistry (but is nice on history, uses, etc), but it's in Russian. That book also has an English edition, but I couldn't find it. It's called Aluminium: The Thirteenth Element, if you wonder. I will gladly ask them (again, thanks for the tip) if/as soon as I can find time for actual editing. (BTW, I'll have to stay away from Wiki activity for a month or so from today on.)
I think gold is an interesting challenge (really, I gave it a look, and there's so much to be done, I wouldn't be scared, I would be intrigued what I could make of that). If the project starts to work on it, I will try to help. At least give some tips, reviews, etc. At best, I would try to look for sources and info and do such stuff, but I'm not sure time would permit. Also, I think iron wouldn't be any more difficult than fluorine (there are just a few elements that are not okay with the normal structure, gold is one of those. Also silver. Hydrogen, helium... it's not too easy to come up with examples, as they're not numerous), except for history and maybe uses, just give it a try when you're done with your current projects. (Also, I am sympathetic about you, and want you to get your stars; as I promised, I'll review Np when I'm back (October or so; if I forget, ping me), and I hope that would help you to move towards the Np star, after getting which getting the star for alkali metal should be easier. Let me know if you need any assistance; I can't promise I'll help, but will try to.)--R8R (talk) 21:53, 20 August 2014 (UTC)
Don't worry too much about me: I have a bronze star too! Two things are slightly unfortunate about it, though: (1) it's not an FA but an FL and (2) it's not part of WP:ELEM (it is Moons of Neptune, FYI). :-P Much of the ref infrastructure was already in place, though, and what I mostly did was add the final touches needed for FL (where the previous writer seemed to have abandoned it some years ago).
You give me motivation for Fe. I should start it! It would be my first nonradioactive element. :-P (Carbon doesn't count, it's a weak GA and I mostly did cleanup. Now I think it is really more of a B. To be fair it was my first GA that I did work on as opposed to just nominated. I started alkali metal earlier, but the GA came later and mostly from StringTheory11.) Double sharp (talk) 21:34, 21 August 2014 (UTC)
Sure, you have a star, but it's not like you can't try to get some other stars you have been trying to get closer to :) I've just given alkali metal another quick look, almost all, if not all, info you need is there, you only need to trim your first two sections, balance Applications, and then a quick check (not sure if a prose check if needed, I am not an expert on that) would probably lead you to a FAC (say if you need a closer look). Waiting to see that.--R8R (talk) 21:10, 16 September 2014 (UTC)
Not sure if I want to trim the first two sections, I just got told by Axiosaurus to expand them further. :-O I moved "periodic trends" into a subarticle periodic trends in the alkali metals, as most of this is covered in the first table and the paragraph immediately after it in condensed form. But I still think Axiosaurus has a point when they want the chemistry to be primary and the history to be secondary – it is a group noted primarily for its chemical similarities (only really rivalled by the halogens and noble gases, I think). Double sharp (talk) 13:37, 17 September 2014 (UTC)

Neutron article - help from Russian speaker needed[edit]

Hello R8R Gtrs. I wonder if you could look at the Neutron article and its talk page. The section Neutron#The problems of the proton–electron model of the nucleus cites a 1930 paper by Viktor Ambartsumian and Dmitri Ivanenko, and the talk page now has a big discussion about the contents of this paper. But the discussion is all by editors who cannot read Russian and are guessing what they think the paper probably says. So it would help if you could read the paper and help answer the questions which have been raised. The paper is now available on-line from footnote 21 of the article, and it is only 3 pages long. Dirac66 (talk) 00:52, 23 September 2014 (UTC)

Sorry, I forgot to say I had replied there. But luckily you already know :) --R8R (talk) 12:30, 23 September 2014 (UTC)

Talkback[edit]

Nuvola apps edu languages.svg
Hello, R8R Gtrs. You have new messages at Double sharp's talk page.
You can remove this notice at any time by removing the {{Talkback}} or {{Tb}} template.

for when you next log in[edit]

ReF7 structure.png Have a nice richly fluorinated present to welcome your eventual (hopefully before the end of next decade, as you once told me XD) return to activity! Double sharp (talk) 16:07, 27 December 2014 (UTC)
Thanks for your kind words. It's nice to know my input was appreciated. It's been a while since I actively worked on whatever. I wish I had an opportunity to come back and spend time on editing or anything I would do just for my own amusement. And I still have stars to get :) If I am lucky, I'll get some time in late January--early February. However, things IRL may turn out to be too difficult to deal with in one take. In that case, it will have to wait until March, April, or even July. I don't know yet. RL is the top priority, and I don't how much it will take in 2015. 2014 was very harsh on me.
I think I need some last minute check on astatine. I'm confident it's a go, just need other editors to confirm it's still fine just in case something's been missed or anything. Then I can fix ref issues and nominate it on my arrival. Will ask for it when I think I'll come back soon.
But unfortunately not now.--R8R (talk) 17:50, 3 January 2015 (UTC)

Shpolsky Sokolov Ternov[edit]

Hello, R8RGtrs! I have seen that you are a Russian speaker. Can you help in finding a piece of info mentioned in a classical book Atomnaia fizika by Eduard Shpolsky 1951 (which had translations in Romanian and other languages) about the radius of the electron which send to a reference analysis of the problem by Arseny Sokolov and Igor Ternov in their book Klasicheskaya teoria polia which might have an English translation.--193.231.19.53 (talk) 12:20, 14 January 2015 (UTC)

Hi! Sure, I'll try to help. Let me just clear it out: you want me to check if Atomnaya fizika discusses the electron radius? Okay, I seem to understand it, but what about the second book? Do you want me to check it as well, and if so, against what? (Also, are you 100% sure about the authors of that one? I can't find the book of that title written by Sokolov/Ternov, but it's easy enough to find a book of that very title by Ivanenko/Sokolov, however, it is a university student book)--R8R (talk) 12:14, 16 January 2015 (UTC)
A error has occured concerning one author, indeed the second book is authored by Ivanenko and Sokolov, not by Sokolov and Ternov. Thanks for the offer to check the original Russian edition of the two books on electron radius.--193.231.19.53 (talk) 10:28, 20 January 2015 (UTC)

Has this second book an English translation? On the other hand, I see that there is a 1955 Romanian translation of the second edition from 1951 of Klasicheskaya teoria polia available to me which begins with Chapter I The general theory of (Dirac) delta function. However Shpolski must have reffered to the first 1948 Russian edition of the book by Ivanenko and Sokolov. It is useful to check the details.--193.231.19.53 (talk) 10:54, 20 January 2015 (UTC)

About the status as university student book I notice from Romanian translation of the second edition that the first edition (1948) has in the preface the specification that

Through this, our book can serve -on one hand- as an addition to known courses of electrodynamics and field theory, and -on the other hand- it represents a an introduction to modern theory of elementary particles, which in its development is based on quantum mechanics.

--193.231.19.53 (talk) 11:04, 20 January 2015 (UTC)

2nd edition of Atomnaya fizika has it, in the volume I dated 1949 (the volume II is dated 1951). It says (approximately), "The hypothesis stating, all of the mass of an electron is determined by its electromagnetic field, allows the calculation the so-called 'classic radius' of an electron." Then they (long story short) state the structure of an electron is not yet known (this discussion is a part of larger one, so what is not known will be explained after they find the "classic radius"), but no matter the structure, the formula defining the radius is the same, differing only by a constant number (2/3 or 4/5), so assuming it's 1, we find the "classic radius" is e^2/(mc^2)=2.8*10^(-13) cm. The books also says there is no experimental means to check this. Later the book concludes, the assumption of the electron being an electric charge contained within a sphere is not tenable because electrostatic repulsion of charge would "explode" an electron, and concludes that not all mass is determined by electromagnetism, but some of it "undoubtedly" is.
The book has no shown references to anything, and there's no list of those at the end of the book. The book's title page, along the author, name, and such, also says (more or less literally), "Approved by the Ministry of Higher Education of the USSR as a textbook for higher educational establishments [i.e., universities and institutes]." The other book also had this tag on its title page, hence my assumption it was a uni student book. It doesn't make the book worse or not eligible to be a citation source, or, well, anything. Students can learn from good books. Just that now you're aware.
I hope it is what you wanted. If not, let me know. I will examine the second book later, I don't have too much time on my hands. Hopefully on Monday or Tuesday.--R8R (talk) 18:07, 24 January 2015 (UTC)
The second book has similar (although shortened) discussion on the classic radius (this book doesn't use the quotation marks for the term). In addition, it also (very quickly, compared to how the previous book held such discussions) calculates that since the field mass of an electron is mel = 2/3 * eφ0/c2 = 1.2361... * e2/(c2r0), where r0 is the effective radius. Calculations show it is ~3.5×10−13 cm. Then the book tells how nonlinear electrodynamics (used in this calculation) is superior to the standard one.
Okay, I think this is it. Tell me if this is what you wanted. Cheers--R8R (talk) 08:36, 27 January 2015 (UTC)
Thanks for your feedback. I think it is useful to compare versions and translations of these books. The Romanian Shpolsky 1954 translation of the first volume says in the end of the first chapter on electron that if electron is a point particle, the self energy of the electron is infinite, on the hand, if electron is not a point-like particle, an inconsistency to the premises of the relativity theory occurs. And then a footnote on the last page of the first chapter mentions Ivanenko Sokolov Klasicheskaia .... There is also a quotation from Lenin's Materialism and Empirio-criticism about matter as objective reality. I've also browsed some pages from Ivanenko Sokolov book about electron as superficially charged electric sphere and its consequences. I must check pages.
I think it is important to check if there are some English translations to these books, especially to the second book. These translations in English would be very useful to a wider wikiaudience to be discussed and used as source for some wikiarticles.--193.231.19.53 (talk) 13:20, 27 January 2015 (UTC)
Glad to have helped.
Oh, well, I just gave it a closer look, the Russian version of the book says that too. And - wow, how could I miss that - it also refers to Ivanenko/Sokolov. Lenin, I remember. But didn't mention that because that was not exactly what you'd asked for and in fact, it's more of philosophy than science.
If you need it, the Russian titles literally translate to "Atomic physics" and "Classical field theory," respectively. But a quick check has shown that (I found one for both, two total) English-language books refer to the original Russian books and not some translations. (Which in itself proves little, but those books aren't too easy to find in English (I've failed). But as I said, it was just a quick check). Lastly, Shpolsky's last name is often spelled Spolsky, if you need that. (I don't know why. That's reminiscent of German and it was a very widely taught language in the Soviet Union, maybe that's why.)--R8R (talk) 20:42, 27 January 2015 (UTC)
Thanks for the answer. I have understood those titles in Russian easily due to international status and similarity of those words. The only word not easy recognizable is polia which is not an international word, but has similarities in other Slavic languages. (I think Russian is an interesting language and I have some very shallow familiarity with it (and other Slavic languages like Czech and Polish) due to exposure to scientific content of books presented also in Russian like Osnovyi teoryi iadernye fiziki or Osnovyi teoryi metalov et splavov. A collaborator of mine knows Russian quite well and he used it many years ago when searching in Referativnyi Zhurnal.) I have also noticed a German 1975 translated edition of Shpolsky in which the mention of Lenin is omitted, I think undeservedly.--193.231.19.53 (talk) 11:27, 17 February 2015 (UTC)
I have also not been able to easily find an English translation of IS book which makes somewhat more difficult the use and check of it as a source here on en.wp.--193.231.19.53 (talk) 11:36, 17 February 2015 (UTC)
I'll stay away from discussion of Leninism. I'm not old enough to have grown back in Soviet times, Leninism is a thing I never learned. I know a couple of things he said, and I find them interesting, but you need to know the whole story to judge it, which I don't. :)
If you need to know it, there was an article I brought to FAC (or GAN, or a pre-FAC peer review), and the article heavily relied on a book in Russian. I was asked if there was a way to avoid non-English books, and I said the book was great (it really was) and it had no translations into English, and I went out with that. And I should've, the rules on references say so. So, while it is great to use only references in English, it is not a strict requirement. (It's great if you knew it, but just in case you didn't, here you go)
Indeed, Russian is a very beautiful language. (However, I'm obviously biased on this one.) And it kinda touches to know there still are people abroad who possess some knowledge of it. But after learning German, I found German is a very very beautiful language as well. Aren't most languages when you get some actual understanding of them?
If you ever need more help with Russian books, just let me know.--R8R (talk) 21:10, 17 February 2015 (UTC)
Thanks for giving another example of use of non-English sources on en.wp. I've heard about some article about Lithuania (history of Lituania I think) written predominantly with Lithuanian sources. The book by Ivanenko & Sokolov is useful as source in some articles (about electron, etc) and will (have to) be cited based on Romanian and Russian versions. In this situation the issue is how users who can't access the book in the languages mentioned to be able to check the statements in it. Perhaps we should ask feedback from a (Swedish) editor physicist like user:Ulflund to see how he can deal with the situation.
(About Lenin I also do not enter in the ideological issue associated with him, just wanted to say that his Materialism and Empiriocriticism is a standalone valuable philosophical and scientific product regardless of other aspects.)--193.231.19.53 (talk) 09:10, 20 February 2015 (UTC)
You can find the wikipedia policy on non-english sources here: WP:NONENG. Ulflund (talk) 19:09, 20 February 2015 (UTC)

Further adventures in Russian romanization[edit]

When copying a music example from a source (with lyrics), I changed the romanization scheme used as you told me some time ago that ï was confusing for ы. :-)

Sorochyntsi fair rationally justified melody.png

(From Mussorgsky's The Fair at Sorochyntsi, Act 1, no. 3) ;-) I also found a score with the original Russian text at [4], but it's old enough to predate the 1918 spelling reform. Hence it has forms like такъ and мнѣ, which I silently updated.

(Incidentally Wikipedia:Romanization of Russian tells me to simply ignore the soft sign ь at the end of words, but since the usual romanization seems to be an apostrophe per Romanization of Russian, I decided to keep the apostrophe instead.) Double sharp (talk) 13:43, 26 March 2015 (UTC)

Good job. I had no problems reading the text, which wouldn't be the case if it had that ï in.
I agree with that, at least in this particular case, you were right to add the apostrophe. When it comes to how you pronounce things, which is certainly a part of what the lines under the notes are for, you should show that. It could be argued they should be dropped when the words containing ь are meant to be put into a context of English language (which affects how you should pronounce the word; also, that may be the reason why the guideline advises to drop the signs), but when you're not bound to that, I would have them in for clarity.--R8R (talk) 09:15, 27 March 2015 (UTC)
Thanks!
I would love to do something for the article for this opera (Сорочинская ярмарка): I heard it recently and rather like it. Unfortunately that would have to rely a lot on Russian sources, and I don't understand Russian (yet!)... :-( Double sharp (talk) 16:59, 29 March 2015 (UTC)

NONENG sources[edit]

I see that the use of non-eng sources has been mentioned here in previous section. I see that you were involved in neutron talk. I bring to your attention that the wikieditor Bdushaw is seemingly irritated by the mentioning of a non-eng book by Vonsovski in neutron magnetic moment, translation of a Russian book.--5.15.185.197 (talk) 08:06, 31 March 2015 (UTC)

User Bdushaw unreasonably says that I'm a troblesome editor because I mentioned that source in that article and brought to his attention the relevant policy.--5.15.185.197 (talk) 08:11, 31 March 2015 (UTC)

Hi! I ask your input as a native speaker about the Russian word uchenie which is contained in the original Russian title of the disputed non-eng book at neutron magnetic moment. This word is given the equivalent theory (teorie, teoria in Romanian) in Romanian translation (Teoria modernă a magnetismului). Google translate display some meanings, among them teaching as English equivalent https://translate.google.com/#ru/en/%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5.--5.15.53.245 (talk) 09:54, 31 March 2015 (UTC)