Ventilation (architecture)

From Wikipedia, the free encyclopedia
Jump to: navigation, search
An air handling unit is used for the heating and cooling of air in a central location (click on image for legend).

Ventilating (the V in HVAC) is the process of "changing" or replacing air in any space to provide high indoor air quality (i.e. to control temperature, replenish oxygen, or remove moisture, odors, smoke, heat, dust, airborne bacteria, and carbon dioxide). Ventilation is used to remove unpleasant smells and excessive moisture, introduce outside air, to keep interior building air circulating, and to prevent stagnation of the interior air.

Ventilation includes both the exchange of air to the outside as well as circulation of air within the building. It is one of the most important factors for maintaining acceptable indoor air quality in buildings. Methods for ventilating a building may be divided into mechanical/forced and natural types.[1]

"Mechanical" or "forced" ventilation is used to control indoor air quality. Excess humidity, odors, and contaminants can often be controlled via dilution or replacement with outside air. However, in humid climates much energy is required to remove excess moisture from ventilation air.

Ventilation increases the energy needed for heating or cooling, however heat recovery ventilation can be used to mitigate the energy consumption. This involves heat exchange between incoming and outgoing air. Energy recovery ventilation additionally includes exchange of humidity.

Kitchens and bathrooms typically have mechanical exhaust to control odors and sometimes humidity. Kitchens have additional problems to deal with such as smoke and grease (see kitchen ventilation). Factors in the design of such systems include the flow rate (which is a function of the fan speed and exhaust vent size) and noise level. If ducting for the fans traverse unheated space (e.g., an attic), the ducting should be insulated as well to prevent condensation on the ducting. Direct drive fans are available for many applications, and can reduce maintenance needs.

Ceiling fans and table/floor fans circulate air within a room for the purpose of reducing the perceived temperature because of evaporation of perspiration on the skin of the occupants. Because hot air rises, ceiling fans may be used to keep a room warmer in the winter by circulating the warm stratified air from the ceiling to the floor. Ceiling fans do not provide ventilation as defined as the introduction of outside air.

Natural ventilation is the ventilation of a building with outside air without the use of a fan or other mechanical system. It can be achieved with openable windows or trickle vents when the spaces to ventilate are small and the architecture permits. In more complex systems warm air in the building can be allowed to rise and flow out upper openings to the outside (stack effect) thus forcing cool outside air to be drawn into the building naturally through openings in the lower areas. These systems use very little energy but care must be taken to ensure the occupants' comfort. In warm or humid months, in many climates, maintaining thermal comfort solely via natural ventilation may not be possible so conventional air conditioning systems are used as backups. Air-side economizers perform the same function as natural ventilation, but use mechanical systems' fans, ducts, dampers, and control systems to introduce and distribute cool outdoor air when appropriate.

Definition[edit]

Ventilation is the intentional movement of air from outside a building to the inside. Ventilation air, as defined by the American Society of Heating, Refrigerating and Air-Conditioning Engineers in ASHRAE Standard 62.1[2] and the ASHRAE Handbook,[3] is that air used for providing acceptable indoor air quality. It mustn't be confused with vents or flues; which mean the exhausts of clothes dryers and combustion equipment such as water heaters, boilers, fireplaces, and wood stoves. The vents or flues carry the products of combustion which have to be expelled from the building in a way which does not cause harm to the occupants of the building. Movement of air between indoor spaces, and not the outside, is called "transfer air".

History[edit]

The development of forced ventilation was spurred by the common belief in the late 18th and early 19th century in the miasma theory of disease, where stagnant 'airs' were thought to spread illness. An early method of ventilation was the use of a ventilating fire near an air vent which would forcibly cause the air in the building to circulate. English engineer John Theophilus Desaguliers provided an early example of this, when he installed ventilating fires in the air tubes on the roof of the House of Commons. Starting with the Covent Garden Theatre, gas burning chandeliers on the ceiling were often specially designed to perform a ventilating role.

Mechanical systems[edit]

The Central Tower of the Palace of Westminster. This octagonal spire was for ventilation purposes, in the more complex system imposed by Reid on Barry, in which it was to draw air out of the Palace. The design was for aesthetic disguise of its function.[4][5]

A more sophisticated system involving the use of mechanical equipment to circulate the air was developed in the mid 19th century. A basic system of bellows was put in place to ventilate Newgate Prison and outlying buildings, by the engineer Stephen Hales in the mid-18th century. The problem with these early devices was that they required constant human labour to operate. David Boswell Reid was called to testify before a Parliamentary committee on proposed architectural designs for the new House of Commons, after the old one burned down in a fire in 1834.[4] In January 1840 Reid was appointed by the committee for the House of Lords dealing with the construction of the replacement for the Houses of Parliament. The post was in the capacity of ventilation engineer, in effect; and with its creation there began a long series of quarrels between Reid and Charles Barry, the architect.[6]

He advocated the installation of a very advanced ventilation system in the new House. His design had air being drawn into an underground chamber, where it would undergo either heating or cooling. It would then ascend into the chamber through thousands of small holes drilled into the floor, and would be extracted through the ceiling by a special ventilation fire within a great stack.[7]

Reid's reputation was made by his work in Westminster. He was commissioned for an air quality survey in 1837 by the Leeds and Selby Railway in their tunnel.[8] The steam vessels built for the Niger expedition of 1841 were fitted with ventilation systems based on Reid's Westminster model.[9] Air was dried, filtered and passed over charcoal.[10][11]

Reid's ventilation method was also applied more fully to St. George's Hall, Liverpool, where the architect, Harvey Lonsdale Elmes, requested that Reid should be involved in ventilation design.[12] Reid considered this the only building in which his system was completely carried out.[13]

Fans[edit]

With the advent of practical steam power, fans could finally be used for ventilation. Reid installed four steam powered fans in the ceiling of St George's Hospital in Liverpool, so that the pressure produced by the fans would force the incoming air upward and through vents in the ceiling.

Reid's pioneering work provides the basis for ventilation systems to this day.[7] He was remembered as "Dr. Reid the ventilator" in the twenty-first century in discussions of energy efficiency, by Lord Wade of Chorlton.[14]

Development of Ventilation Rates[edit]

Ventilating a space with fresh air aims to avoid "bad air". The study of what constitutes bad air dates back to the 1600s, when the scientist Mayow studied asphyxia of animals in confined bottles.[15] The poisonous component of air was later identified as carbon dioxide (CO2), by Lavoisier in the very late 1700s, starting a debate as to the nature of "bad air" which humans perceive to be stuffy or unpleasant. Early hypotheses included excess concentrations of CO2 and oxygen depletion. However, by the late 1800s, scientists thought biological contamination, not oxygen or CO2, as the primary component of unacceptable indoor air. However, it was noted as early as 1872 that CO2 concentration closely correlates to perceived air quality.

The first estimate of minimum ventilation rates was developed by Tredgold in 1836.[16] This was followed by subsequent studies on the topic by Billings [17] in 1886 and Flugge in 1905. The recommendations of Billings and Flugge were incorporated into numerous building codes from 1900-1920s, and published as an industry standard by ASHVE (the predecessor to ASHRAE) in 1914.[15]

Study continued into the varied effects of thermal comfort, oxygen, carbon dioxide, and biological contaminants. Research was conducted with humans subjects controlled test chambers. Two studies, published between 1909-1911, showed that carbon dioxide was not the offending component. Subjects remained satisfied in chambers with high levels of CO2, so long as the chamber remained cool.[15] (Subsequently, it has been determined that CO2 is, in fact, harmful at concentrations over 50,000ppm [18])

ASHVE began a robust research effort in 1919. By 1935, ASHVE funded research conducted by Lemberg, Brandt, and Morse - again using human subjects in test chambers - suggested the primary component of "bad air" was odor, perceived by the human olfactory nerves.[19] Human response to odor was found to be logarithmic to contaminant concentrations, and related to temperature. At lower, more comfortable temperatures, lower ventilation rates were satisfactory. A 1936 human test chamber study by Yaglou, Riley, and Coggins culminated much of this effort, considering odor, room volume, occupant age, cooling equipment effects, and recirculated air implications, which provided guidance for ventilation rates.[20] The Yaglou research has been validated, and adopted into industry standards, beginning with the ASA code on 1946. From this research base, ASHRAE (having by the replaced ASHVE) developed space by space recommendations, and published them as ASHRAE Standard 62-1975: Ventilation for acceptable indoor air quality.

As more architecture incorporated mechanical ventilation, the cost of outdoor air ventilation came under some scrutiny. In cold, warm, humid, or dusty climates, it is cost preferable to minimize ventilation with outdoor air to conserve energy, cost, or filtration. This critique (e.g. Tiller [21]) led ASHRAE to reduce outdoor ventilation rates in 1981, particularly in non-smoking areas. However subsequent research by Fanger,[22] W. Cain, and Janssen validated the Yaglou model.

Historical Ventilation Rates
Author or Source Year Ventilation Rate (IP) Ventilation Rate (SI) Basis or rationale
Tredgold 1836 4 CFM per person 2 L/s per person Basic metabolic needs, breathing rate, and candle burning
Billings 1895 30 CFM per person 15 L/s per person Indoor air hygiene, preventing spread of disease
Flugge 1905 30 CFM per person 15 L/s per person Excessive temperature or unpleasant odor
ASHVE 1914 30 CFM per person 15 L/s per person Based on Billings, Flugge and contemporaries
Early US Codes 1925 30 CFM per person 15 L/s per person Same as above
Yaglou 1936 15 CFM per person 7.5 L/s per person Odor control, outdoor air as a fraction of total air
ASA 1946 15 CFM per person 7.5 L/s per person Based on Yahlou and contemporaries
ASHRAE 1975 15 CFM per person 7.5 L/s per person Same as above
ASHRAE 1981 10 CFM per person 7.5 L/s per person For non-smoking areas, reduced.
ASHRAE 1989 15 CFM per person 7.5 L/s per person Based on Fanger, W. Cain, and Janssen

ASHRAE continues to publish space-by-space ventilation rate recommendations, which are decided by a consensus committee of industry experts. The modern descendants of ASHRAE standard 62-1975 are ASHRAE Standard 62.1, for non-residential spaces, and ASHRAE 62.2 for residences.

In 2004, the calculation method was revised to include both an occupant-based contamination component and an area based contamination component.[23] These two components are additive, to arrive at an overall ventilation rate. The change was made to recognize that densely-populated areas were sometimes over-ventilated (leading to higher energy and cost) using a per-person methodology.

Occupant Based Ventilation Rates[23]

IP Units SI Units Category Examples
0 cfm/person 0 L/s/person Spaces where ventilation requirements are primarily associated with building elements, not occupants. Storage Rooms, Warehouses
5 cfm/person 2.5 L/s/person Spaces occupied by adults, engaged in low levels of activity Office space
7.5 cfm/person 3.8 L/s/person Spaces where occupants are engaged in higher levels of activity, but not strenuous, or activities generating more contaminants Retail spaces, lobbies
10 cfm/person 5 L/s/person Spaces where occupants are engaged in more strenuous activity, but not exercise, or activities generating more contaminants Classrooms, school settings
20 cfm/person 10 L/s/person Spaces where occupants are engaged in exercise, or activities generating many contaminants dance floors, exercise rooms

Area-based ventialtion rates[23]

IP Units SI Units Category Examples
0.06 cfm/ft2 0.30 L/s/m2 Spaces where space contamination is normal, or similar to an office environment Conference rooms, lobbies
0.12 cfm/ft2 0.60 L/s/m2 Spaces where space contamination is significantly higher than an office environment Classrooms, museums
0.18 cfm/ft2 0.90 L/s/m2 Spaces where space contamination is even higher than the previous category Laboratories, art classrooms
0.30 cfm/ft2 1.5 L/s/m2 Specific spaces in sports or entertainment where contaminants are released Sports, entertainment
0.48 cfm/ft2 2.4 L/s/m2 Reserved for indoor swimming areas, where chemical concentrations are high Indoor swimming areas

From 1999 to 2010, there was considerable development of the application protocol for ventilation rates. These advancements address occupant and process based ventilation rates, room ventilation effectivness, and system ventilation effectivness [24]

Necessity[edit]

When people or animals are present in buildings, ventilation air is necessary to dilute odors and limit the concentration of carbon dioxide and airborne pollutants such as dust, smoke and volatile organic compounds (VOCs). Ventilation air is often delivered to spaces by mechanical systems which may also heat, cool, humidify and dehumidify the space. Air movement into buildings can occur due to uncontrolled infiltration of outside air through the building fabric (see stack effect) or the use of deliberate natural ventilation strategies. Advanced air filtration and treatment processes such as scrubbing, can provide ventilation air by cleaning and recirculating a proportion of the air inside a building.

Types[edit]

  • Mechanical or forced ventilation: through an air handling unit or direct injection to a space by a fan. A local exhaust fan can enhance infiltration or natural ventilation, thus increasing the ventilation air flow rate.
  • Natural ventilation occurs when the air in a space is changed with outdoor air without the use of mechanical systems, such as a fan. Most often natural ventilation is assured through operable windows but it can also be achieved through temperature and pressure differences between spaces. Open windows or vents are not a good choice for ventilating a basement or other below ground structure. Allowing outside air into a cooler below ground space will cause problems with humidity and condensation.
  • Mixed Mode Ventilation or Hybrid ventilation: uses both mechanical and natural ventilation processes. The mechanical and natural components may be used in conjunction with each other or separately at different times of day. The natural component, sometimes subject to unpredictable external weather conditions may not always be adequate to ventilate the desired space. The mechanical component is then used to increase the overall ventilation rate so that the desired internal conditions are met. Alternatively the mechanical component may be used as a control measure to regulate the natural ventilation process, for example, to restrict the air change rate during periods of high wind speeds.
  • Infiltration is separate from ventilation, but is often used to provide ventilation air.

Ventilation rate[edit]

The ventilation rate, for CII buildings, is normally expressed by the volumetric flowrate of outside air being introduced to the building. The typical units used are cubic feet per minute (CFM) or liters per second (L/s). The ventilation rate can also be expressed on a per person or per unit floor area basis, such as CFM/p or CFM/ft², or as air changes per hour.

For residential buildings, which mostly rely on infiltration for meeting their ventilation needs, a common ventilation rate measure is the air change rate (or air changes per hour): the hourly ventilation rate divided by the volume of the space (I or ACH; units of 1/h). During the winter, ACH may range from 0.50 to 0.41 in a tightly insulated house to 1.11 to 1.47 in a loosely insulated house.[25]

ASHRAE now recommends ventilation rates dependent upon floor area, as a revision to the 62-2001 standard, in which the minimum ACH was 0.35, but no less than 15 CFM/person (7.1 L/s/person). As of 2003, the standard has been changed to 3 CFM/100 sq. ft. (15 l/s/100 sq. m.) plus 7.5 CFM/person (3.5 L/s/person). [26]

Standards[edit]

  • In 1973, in response to the 1973 oil crisis and conservation concerns, ASHRAE Standards 62-73 and 62-81) reduced required ventilation from 10 CFM (4.76 L/S) per person to 5 CFM (2.37 L/S) per person. This was found to be a primary cause of sick building syndrome.
  • Current ASHRAE standards (Standard 62-89) states that appropriate ventilation guidelines are 20 CFM (9.2 L/s) per person in an office building, and 15 CFM (7.1 L/s) per person for schools.

In certain applications, such as submarines, pressurized aircraft, and spacecraft, ventilation air is also needed to provide oxygen, and to dilute carbon dioxide for survival. Batteries in submarines also discharge hydrogen gas, which must also be ventilated for health and safety. In any pressurized, regulated environment, ventilation is necessary to control any fires that may occur, as the flames may be deprived of oxygen.[27]

ANSI/ASHRAE (Standard 62-89) sets maximum CO2 guidelines in commercial buildings at 1000 ppm, however, OSHA has set a limit of 5000 ppm over 8 hours.[28]

Ventilation guidelines are based upon the minimum ventilation rate required to maintain acceptable levels of bioeffluents. Carbon dioxide is used as a reference point, as it is the gas of highest emission at a relatively constant value of 0.005 L/s. The mass balance equation is:

Q = G/(Ci − Ca)

  • Q = ventilation rate (L/s)
  • G = CO2 generation rate
  • Ci = acceptable indoor CO2 concentration
  • Ca = ambient CO2 concentration[29]

Equipment[edit]

Natural ventilation[edit]

Natural ventilation harnessing naturally available forces to supply and remove air in an enclosed space. There are three types of natural ventilation occurring in buildings: wind driven ventilation, pressure-driven flows, and stack ventilation.[30] The pressures generated by 'the stack effect' rely upon the buoyancy of heated or rising air. Wind driven ventilation relies upon the force of the prevailing wind to pull and push air through the enclosed space as well as through breaches in the building’s envelope (see Infiltration (HVAC)).

Almost all historic buildings were ventilated naturally.[31] The technique was generally abandoned in larger US buildings during the late 20th century as the use of air conditioning became more widespread. However, with the advent of advanced Building Energy Modeling (BEM) software, improved Building Automation Systems (BAS), Leadership in Energy and Environmental Design (LEED) design requirements, and improved window manufacturing techniques; natural ventilation has made a resurgence in commercial buildings both globally and throughout the US.

The benefits of natural ventilation include:

Demand-controlled ventilation (DCV)[edit]

Demand-controlled ventilation (DCV, also known as Demand Control Ventilation) makes it possible to maintain air quality while conserving energy. ASHRAE has determined that: "It is consistent with the ventilation rate procedure that demand control be permitted for use to reduce the total outdoor air supply during periods of less occupancy."[32] In a DCV system, CO2 sensors control the amount of ventilation. During peak occupancy, CO2 levels rise, and the system adjusts to deliver the same amount of outdoor air as would be used by the ventilation-rate procedure. However, when spaces are less occupied, CO2 levels reduce, and the system reduces ventilation to conserves energy. DCV is a well-established practice,[33] and is required in high occupancy spaces by building energy standards such as ASHRAE 90.1.[34]

Local exhaust ventilation[edit]

Local exhaust ventilation addresses the issue of avoiding the contamination of indoor air by specific high-emission sources by capturing airborne contaminants before they are spread into the environment. This can include water vapor control, lavatory bioeffluent control, solvent vapors from industrial processes, and dust from wood- and metal-working machinery. Air can be exhausted through pressurized hoods or through the use of fans and pressurizing a specific area.[35]
A local exhaust system is composed of 5 basic parts

  1. A hood that captures the contaminant at its source
  2. Ducts for transporting the air
  3. An air-cleaning device that removes/minimizes the contaminant
  4. A fan that moves the air through the system
  5. An exhaust stack through which the contaminated air is discharged[35]

In the UK, the use of LEV systems have regulations set out by the Health and Safety Executive (HSE) which are referred to as the Control of Substances Hazardous to Health (CoSHH). Under CoSHH, legislation is set out to protect users of LEV systems by ensuring that all equipment is tested at least every fourteen months to ensure the LEV systems are performing adequately. All parts of the system must be visually inspected and thoroughly tested and where any parts are found to be defective the inspector must issue a red label to identify the defective part and the issue.

The owner of the LEV system must then have the defective parts repaired or replaced before the system can be used.

Ventilation and combustion[edit]

Combustion (e.g., fireplace, gas heater, candle, oil lamp, etc.) consumes oxygen while producing carbon dioxide and other unhealthy gases and smoke, requiring ventilation air. An open chimney promotes infiltration (i.e. natural ventilation) because of the negative pressure change induced by the buoyant, warmer air leaving through the chimney. The warm air is typically replaced by heavier, cold air.

Ventilation in a structure is also needed for removing water vapor produced by respiration, burning, and cooking, and for removing odors. If water vapor is permitted to accumulate, it may damage the structure, insulation, or finishes[citation needed]. When operating, an air conditioner usually removes excess moisture from the air. A dehumidifier may also be appropriate for removing airborne moisture.

Smoking and ventilation[edit]

ASHRAE standard 62 states that air removed from an area with environmental tobacco smoke shall not be recirculated into ETS-free air. A space with ETS requires more ventilation to achieve similar perceived air quality to that of a non-smoking environment.

The amount of ventilation in an ETS area is equal to the amount of ETS-free area plus the amount V, where:

V = DSD × VA × A/60E

  • V = recommended extra flow rate in CFM (L/s)
  • DSD = design smoking density (estimated number of cigarettes smoked per hour per unit area)
  • VA = volume of ventilation air per cigarette for the room being designed (ft3/cig)
  • E = contaminant removal effectiveness[36]

Problems[edit]

In hot, humid climates, unconditioned ventilation air will deliver approximately one pound of water each day for each cfm of outdoor air per day, annual average. This is a great deal of moisture, and it can create serious indoor moisture and mold problems.

  • Ventilation efficiency is determined by design and layout, and is dependent upon placement and proximity of diffusers and return air outlets. If they are located closely together, supply air may mix with stale air, decreasing efficiency of the HVAC system, and creating air quality problems.
  • System imbalances occur when components of the HVAC system are improperly adjusted or installed, and can create pressure differences (too much circulating air creating a draft or too little circulating air creating stagnancy).
  • Cross-contamination occurs when pressure differences arise, forcing potentially contaminated air from one zone to an uncontaminated zone. This often involves undesired odors or VOCs.
  • Re-entry of exhaust air occurs when exhaust outlets and fresh air intakes are either too close, or prevailing winds change exhaust patterns, or by infiltration between intake and exhaust air flows.
  • Entrainment of contaminated outside air through intake flows will result in indoor air contamination. There are a variety of contaminated air sources, ranging from industrial effluent to VOCs put off by nearby construction work.[37]

Air quality procedures[edit]

Ventilation Rate Procedure is rate based on standard and prescribes the rate at which ventilation air must be delivered to a space and various means to condition that air.[38] Air quality is assessed (through CO2 measurement) and ventilation rates are mathematically derived using constants. Indoor Air Quality Procedure uses one or more guidelines for the specification of acceptable concentrations of certain contaminants in indoor air but does not prescribe ventilation rates or air treatment methods.[38] This addresses both quantitative and subjective evaluations, and is based on the Ventilation Rate Procedure. It also accounts for potential contaminants that may have no measured limits, or for which no limits are not set (such as formaldehyde offgassing from carpet and furniture).

See also[edit]

References and notes[edit]

  1. ^ Ventilation and Infiltration chapter, Fundamentals volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, GA, 2005
  2. ^ ANSI/ASHRAE Standard 62.1, Ventilation for Acceptable Indoor Air Quality, ASHRAE, Inc., Atlanta, GA, USA
  3. ^ The ASHRAE Handbook, ASHRAE, Inc., Atlanta, GA, USA
  4. ^ a b Porter, Dale H. (1998). The Life and Times of Sir Goldsworthy Gurney: Gentleman scientist and inventor, 1793-1875. Associated University Presses, Inc. pp. 177–179. ISBN 0-934223-50-5. 
  5. ^ "The Towers of Parliament". www.parliament.uk. 
  6. ^ Alfred Barry. "The life and works of Sir Charles Barry, R.A., F.R.S., &c. &c". Archive.org. Retrieved 2011-12-29. 
  7. ^ a b Robert Bruegmann. "Central Heating and Ventilation:Origins and Effects on Architectural Design". 
  8. ^ Russell, Colin A; Hudson, John (2011-12-31). Early Railway Chemistry and Its Legacy. Royal Society of Chemistry. p. 67. ISBN 978-1-84973-326-7. Retrieved 2011-12-29. 
  9. ^ Milne, Lynn. "McWilliam, James Ormiston". Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/17747.  (Subscription or UK public library membership required.)
  10. ^ Philip D. Curtin (1973). The image of Africa: British ideas and action, 1780-1850 2. University of Wisconsin Press. p. 350. ISBN 978-0-299-83026-7. Retrieved 2011-12-29. 
  11. ^ "William Loney RN - Background". Peter Davis. Retrieved 7 January 2012. 
  12. ^ Sturrock, Neil; Lawsdon-Smith, Peter (10 June 2009). "David Boswell Reid's Ventilation of St. George's Hall, Liverpool". The Victorian Web. Retrieved 7 January 2012. 
  13. ^  Lee, Sidney, ed. (1896). "Reid, David Boswell". Dictionary of National Biography 47. London: Smith, Elder & Co. 
  14. ^ Great Britain: Parliament: House of Lords: Science and Technology Committee (2005-07-15). Energy Efficiency: 2nd Report of Session 2005-06. The Stationery Office. p. 224. ISBN 978-0-10-400724-2. Retrieved 2011-12-29. 
  15. ^ a b c Janssen, John (September 1999). "The History of Ventilation and Temperature Control". ASHRAE Journal (American Society of Heating Refrigeration and Air Conditioning Engineers, Atlanta, GA). Retrieved June 11, 2014. 
  16. ^ Tredgold, T. 1836. "The Principles of Warming and Ventilation - Public Buildings". London: M. Taylor
  17. ^ Billings, J.S. 1886. "The principles of ventilation and heating and their practical application 2d ed., with corrections" https://openlibrary.org/books/OL22096429M/The_principles_of_ventilation_and_heating
  18. ^ http://www.cdc.gov/niosh/idlh/124389.html
  19. ^ Lemberg WH, Brandt AD, and Morse, K. 1935. "A laboratory study of minimum ventilation requirements: ventilation box experiments". ASHVE Transactions, V. 41
  20. ^ Yaglou CPE, Riley C, and Coggins DI. 1936. "Ventilation Requirements" ASHVE Transactions, v.32
  21. ^ Tiller, T.R. 1973. ASHRAE Transactions, v. 79
  22. ^ Berg-Munch B, Clausen P, Fanger PO. 1984. "Ventilation requirements for the control of body odor in spaces occupied by women". Proceedings of the 3rd Int. Conference on Indoor Air Qulaity, Stockholm, Sweden, V5
  23. ^ a b c Stanke D. 2006. "Explaining Science Behind Standard 62.1-2004". ASHRAE IAQ Applications, V7, Summer 2006. http://sspc621.ashraepcs.org/pdf/summer2006.pdf accessed 11 June 2014
  24. ^ Stanke, DA. 2007. "Standard 62.1-2004: Stricter or Not?" ASHRAE IAQ Applications, Spring 2006. http://sspc621.ashraepcs.org/pdf/IAQArticleSpring2006.pdf accessed 11 June 2014
  25. ^ Kavanaugh, Steve. Infiltration and Ventilation In Residential Structures. February 2004
  26. ^ M.H. Sherman. "ASHRAE’s First Residential Ventilation Standard". Lawrence Berkeley National Laboratory. Archived from the original on Feb 29, 2012. 
  27. ^ Department of the Navy. Navy Safety and Occupational Health Program Manual. 30 May 2007.
  28. ^ Apte, Michael G. Associations between indoor CO2 concentrations and sick building syndrome symptoms in U.S. office buildings: an analysis of the 1994-1996 BASE study data.” Indoor Air, Dec 2000: 246-258.
  29. ^ "Home". Wapa.gov. Retrieved 2012-11-10. 
  30. ^ How Natural Ventilation Works by Steven J. Hoff and Jay D. Harmon. Ames, IA: Department of Agricultural and Biosystems Engineering, Iowa State University, November 1994.
  31. ^ "Natural Ventilation - Whole Building Design Guide". 
  32. ^ ASHRAE (2006). "Interpretation IC 62.1-2004-06 Of ANSI/ASHRAE Standard 62.1-2004 Ventilation For Acceptable Indoor Air Quality". American Society of Heating, Refrigerating, and Air-Conditioning Engineers. p. 2. Retrieved 10 April 2013. 
  33. ^ Lin X, Lau J & Grenville KY. (2012). "Evaluation of the Validity of the Assumptions Underlying Co2-Based Demand-Controlled Ventialtion by a Literature review.". ASHRAE Transactions NY-14-007 (RP-1547). 
  34. ^ ASHRAE (2010). "ANSI/ASHRAE Standard 90.1-2010: Energy Standard for Buildings Except Low-Rise residential Buildings". American Society of Heating Ventilation and Air Conditioning Engineers, Atlanta, GA. 
  35. ^ a b "Ventilation. - 1926.57". Osha.gov. Retrieved 2012-11-10. 
  36. ^ ASHRAE, Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc, Atlanta, 2002.
  37. ^ US EPA. Section 2: Factors Affecting Indoor Air Quality. http://www.epa.gov/iaq/largebldgs/pdf_files/sec_2.pdf
  38. ^ a b ASHRAE Standard 62

External links[edit]