WISEPA J173835.53+273258.9

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Coordinates: Sky map 17h 38m 35.54s, +27° 32′ 58.78″

WISEPA J173835.53+273258.9
Observation data
Epoch MJD 55451.22[1]      Equinox J2000[1]
Constellation Hercules
Right ascension 17h 38m 35.54s[1]
Declination 27° 32′ 58.78″[1]
Spectral type Y0[1][2]
Apparent magnitude (J (MKO filter system)) 19.47 ± 0.08[1]
Apparent magnitude (H (MKO filter system)) 20.66 ± 0.38[1]
Proper motion (μ) RA: 317 ± 9[3] mas/yr
Dec.: 321 ± 11[3] mas/yr
Parallax (π) 128 ± 10[3] mas
Distance 25 ± 2 ly
(7.8 ± 0.6 pc)
Mass 20 (20—30)[4] MJup
Radius 0.93 (0.86—0.94)[4] RJup
Surface gravity (log g) 4.75 (4.75—5.0)[4] cgs
Temperature 350 (350—400)[4] K
Other designations
WISEPA J173835.53+273258.9[1]
WISEP J1738+2732[4]
WISE J1738+2732[1]
WISE 1738+2732[1]

WISE 1738+2732 (full designation WISEPA J173835.53+273258.9) is a brown dwarf of spectral class Y0,[1][2] located in constellation Hercules at 25.5 light-years from Earth.[3]

History of observations[edit]


WISE 1738+2732 was discovered in 2011 from data, collected by Wide-field Infrared Survey Explorer (WISE) Earth-orbiting satellite — NASA infrared-wavelength 40 cm (16 in) space telescope, which mission lasted from December 2009 to February 2011. WISE 1738+2732 has two discovery papers: Kirkpatrick et al. (2011) and Cushing et al. (2011), however, basically with the same authors and published nearly simultaneously.[1][4]

  • Kirkpatrick et al. presented discovery of 98 new found by WISE brown dwarf systems with components of spectral types M, L, T and Y, among which also was WISE 1738+2732.[1][~ 1]
  • Cushing et al. presented discovery of seven brown dwarfs — one of T9.5 type, and six of Y-type — first members of the Y spectral class, ever discovered and spectroscopically confirmed, including "archetypal member" of the Y spectral class WISE 1828+2650, and WISE 1738+2732.[4] These seven objects are also the faintest seven of 98 brown dwarfs, presented in Kirkpatrick et al. (2011).[1]


Currently the most accurate distance estimate of WISE 2056+1459 is a trigonometric parallax, published in 2014 by Beichman et al.: 0.128 ± 0.010 arcsec, corresponding to a distance 7.8+0.7
pc, or 25.5+2.2

WISEPA J173835.53+273258.9 distance estimates

Source Parallax, mas Distance, pc Distance, ly Distance, Pm Ref.
Kirkpatrick et al. (2011), Table 6 10.5 34.2 [1]
Cushing et al. (2011), Table 7 3.4+3.9
Marsh et al. (2013)
(according Kirkpatrick et al. (2012))
111±36 9+4.3
Marsh et al. (2013) 66±50 >6.0[~ 2] >19.6 [5]
Dupuy & Kraus (2013) 102±18[~ 3] 9.8+2.1
Beichman et al. (2014) 128±10 7.8+0.7

Non-trigonometric distance estimates are marked in italic. The most precise estimate is marked in bold.

Space motion[edit]

WISE 1738+2732 has proper motion of about 451 milliarcseconds per year.[3]

WISEPA J173835.53+273258.9 proper motion estimates

Source μ, mas/yr P. A., ° μRA, mas/yr μDEC, mas/yr Ref.
Kirkpatrick et al. (2011) 1141 148 602 ± 398 −969 ± 456 [1]
Marsh et al. (2013) 496 135 348 ± 71 −354 ± 55 [5]
Dupuy & Kraus (2013) 493 ± 40 144 ± 6 292 ± 63 −396 ± 22 [6]
Beichman et al. (2014) 451 45 317 ± 9 321 ± 11 [3]

The most accurate estimates are marked in bold. Italic are computed values, not italic are values, given in the sources.


The object's temperature estimate is 350 (350—400) K.[4] Its spectrum is similar with spectrum of another Y-dwarf WISE 1405+5534.

See also[edit]

The other six discoveries of brown dwarfs, published in Cushing et al. (2011):[4]


  1. ^ These 98 brown dwarf systems are only among first, not all brown dwarf systems, discovered from data, collected by WISE: six discoveries were published earlier (however, also listed in Kirkpatrick et al. (2011)) in Mainzer et al. (2011) and Burgasser et al. (2011), and the other discoveries were published later.
  2. ^ In this parallax and distance estimates the most probable distance value does not equal to inverse maximum likelihood parallax value, as would be in the case of exact parallax and distance values. This is due to the fact that Marsh et al. used a more sophisticated method of converting maximum likelihood parallaxes into most probable distances, that uses also some prior information, and not just the calculation of the inverse value. (The method description see in Marsh et al. (2013), Section 4).
  3. ^ Relative parallax.


  1. ^ a b c d e f g h i j k l m n o p Kirkpatrick, J. Davy; Cushing, Michael C.; Gelino, Christopher R.; Griffith, Roger L.; Skrutskie, Michael F.; Marsh, Kenneth A.; Wright, Edward L.; Mainzer, A.; Eisenhardt, Peter R.; McLean, Ian S.; Thompson, Maggie A.; Bauer, James M.; Benford, Dominic J.; Bridge, Carrie R.; Lake, Sean E.; Petty, Sara M.; Stanford, S. A.; Tsai, Chao-Wei; Bailey, Vanessa; Beichman, Charles A.; Bloom, Joshua S.; Bochanski, John J.; Burgasser, Adam J.; Capak, Peter L.; Cruz, Kelle L.; Hinz, Philip M.; Kartaltepe, Jeyhan S.; Knox, Russell P.; Manohar, Swarnima; Masters, Daniel; Morales-Calderon, Maria; Prato, Lisa A.; Rodigas, Timothy J.; Salvato, Mara; Schurr, Steven D.; Scoville, Nicholas Z.; Simcoe, Robert A.; Stapelfeldt, Karl R.; Stern, Daniel; Stock, Nathan D.; Vacca, William D. (2011). "The First Hundred Brown Dwarfs Discovered by the Wide-field Infrared Survey Explorer (WISE)". The Astrophysical Journal Supplement 197 (2): 19. arXiv:1108.4677v1. Bibcode:2011ApJS..197...19K. doi:10.1088/0067-0049/197/2/19.  edit
  2. ^ a b c Kirkpatrick, J. D.; Gelino, C. R.; Cushing, M. C.; Mace, G. N.; Griffith, R. L.; Skrutskie, M. F.; Marsh, K. A.; Wright, E. L.; Eisenhardt, P. R.; McLean, I. S.; Mainzer, A. K.; Burgasser, A. J.; Tinney, C. G.; Parker, S.; Salter, G. (2012). "Further Defining Spectral Type "Y" and Exploring the Low-mass End of the Field Brown Dwarf Mass Function". The Astrophysical Journal 753 (2): 156. arXiv:1205.2122. Bibcode:2012ApJ...753..156K. doi:10.1088/0004-637X/753/2/156.  edit
  3. ^ a b c d e f g h Beichman, C.; Gelino, Christopher R.; Kirkpatrick, J. Davy; Cushing, Michael C.; Dodson-Robinson, Sally; Marley, Mark S.; Morley, Caroline V.; Wright, E. L. (2014). "WISE Y Dwarfs As Probes of the Brown Dwarf-Exoplanet Connection". The Astrophysical Journal 783 (2): 68. arXiv:1401.1194v2. Bibcode:2014ApJ...783...68B. doi:10.1088/0004-637X/783/2/68.  edit
  4. ^ a b c d e f g h i j Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Griffith, Roger L.; Skrutskie, Michael F.; Mainzer, A.; Marsh, Kenneth A.; Beichman, Charles A.; Burgasser, Adam J.; Prato, Lisa A.; Simcoe, Robert A.; Marley, Mark S.; Saumon, D.; Freedman, Richard S.; Eisenhardt, Peter R.; Wright, Edward L. (2011). "The Discovery of Y Dwarfs using Data from the Wide-field Infrared Survey Explorer (WISE)". The Astrophysical Journal 743 (1): 50. Bibcode:2011ApJ...743...50C. doi:10.1088/0004-637X/743/1/50.  edit
  5. ^ a b Marsh, Kenneth A.; Wright, Edward L.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Cushing, Michael C.; Griffith, Roger L.; Skrutskie, Michael F.; Eisenhardt, Peter R. (2013). "Parallaxes and Proper Motions of Ultracool Brown Dwarfs of Spectral Types Y and Late T". The Astrophysical Journal 762 (2): 119. arXiv:1211.6977. Bibcode:2013ApJ...762..119M. doi:10.1088/0004-637X/762/2/119.  edit
  6. ^ a b Dupuy, T. J.; Kraus, A. L. (2013). "Distances, Luminosities, and Temperatures of the Coldest Known Substellar Objects". Science 341 (6153): 1492. doi:10.1126/science.1241917.