Wafer backgrinding

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Wafer backgrinding is a semiconductor device fabrication step during which wafer thickness is reduced to allow for stacking and high density packaging of integrated circuits (IC).

ICs are being produced on semiconductor wafers that undergo a multitude of processing steps. The silicon wafers predominantly being used today have diameters of 20 and 30 cm. They are roughly 750 μm thick to ensure a minimum of mechanical stability and to avoid warping during high-temperature processing steps.

Smartcards, USB memory sticks, smartphones, handheld music players, and other ultra compact electronic products would not be feasible in their present form without minimizing the size of their various components along all dimensions. The backside of the wafers are thus ground prior to wafer dicing (where the individual microchips are being singulated). Wafers thinned down to 75 to 50 μm are common today.[1]

Prior to grinding wafers are commonly laminated with UV curable back grinding tape. UV curable back grinding tapes ensure against wafer surface damage during back grinding and prevent wafer surface contamination caused by infiltration of grinding fluid and/or debris. [2] The wafers are also washed with deionized water throughout the process which helps prevent contamination.[3]

The process is also known as "Backlap"[4] or "Wafer thinning".[5]

See also[edit]

References[edit]

  1. ^ International Technology Roadmap for Semiconductors 2009 edition, page 12-53.
  2. ^ BG Tape, by LINTEC of AMERICA
  3. ^ Wafer Preparation, by Syagrus Systems
  4. ^ Introduction to Semiconductor Technology, by ST Micro-electronics, page 6.
  5. ^ Wafer Backgrind at Silicon Far East.