Waterfall rail accident

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Waterfall rail accident
Waterfallrailcrash.jpg
Details
Date 31 January 2003
Location Waterfall, New South Wales
37 km (23 mi) SW from Sydney
Country Australia
Rail line South Coast Line
Operator CityRail
Type of incident Derailment
Cause Driver heart attack
Statistics
Trains 1
Deaths 7
Injuries 40

The Waterfall rail accident was a train accident that occurred on 31 January 2003 near Waterfall, New South Wales, Australia. The train derailed, killing seven people aboard, including the train driver.[1]

Incident[edit]

On the day of the disaster, a Tangara interurban train service, set G7, which had come from Sydney Central Station at 6:24 am, departed Sydney Waterfall railway station moving south towards Port Kembla Station via Wollongong. At approximately 7:15 am, the driver suffered a sudden heart attack and lost control of the train. Consequently, the train was travelling at 117 km/h (73 mph) as it approached a curve in the tracks through a small gorge. This curve is rated for speeds no greater than 60 km/h (37 mph). The train derailed, overturned, and collided with the rocky walls of the gorge in a remote area south of the station. It was reported that rescuers had to carry heavy lifting equipment for more than 1.5 km (0.93 mi) to reach the site.[2] Two of the carriages landed on their sides and another two were severely damaged in the accident.[3] In addition to the seven fatalities, many more passengers were injured.

The subsequent official inquiry discovered the deadman's brake had not been applied. The train guard's solicitor stated that the guard was in a microsleep for as much as 30 seconds just prior to the accident.[citation needed] The experienced human-factors accident investigator determined the organizational culture had the driver firmly in charge, making it psychologically more difficult for the guard to act.[citation needed]

Causes of the accident[edit]

Tangara trains have a number of safety and vigilance devices installed, such as a deadman's brake, to address problems when the driver becomes incapacitated. If the driver releases pressure from this brake, the train will come to a halt.

The train in question was a four-car Outer Suburban Tangara set, numbered G7 and fitted with a Mitsubishi Electric alternating current traction system for evaluation purposes. The driver was in the leading driving carriage and the guard was in the rear driving carriage, in between which were two non-driving motor cars. On this service, the guard, who could have applied the emergency brake, and the deadman's brake were the main safety mechanisms in place.

The train was later found to be travelling in excess of 117 km/h (73 mph) as it approached the 60 km/h (37 mph) curve where the accident occurred. Neither the deadman's brake nor the guard had intervened in this situation, and this excessive speed was found to be the direct cause of the accident. Training of train staff was also found to be a contributing factor in the accident.

Train G7 was scrapped in 2005 due to the damage sustained in the accident; all four cars were damaged beyond repair.

These were the official findings of the NSW Ministry of Transport investigation of the accident. A report of the accident, managed by Commissioner Peter McInerney, was released in January 2004.[1]

Systemic causes[edit]

It was reported that G7 was said to have been reported for technical problems as many as 12 times, and had developed a reputation amongst the mechanical operations branch, saying these problems were "normal" for the set in question. During the six months up to the accident, three reports of technical problems were made.

The inquiry found a number of flaws in the deadman's handle and facts related to the deadman's pedal:

  • The dead weight of the unconscious and overweight driver appeared to be enough to defeat the deadman's pedal.
  • The design of the deadman's pedal did not appear to be able to operate as intended with drivers above a certain weight.
  • Marks near the deadman's pedal indicated some drivers were wedging a conveniently sized signalling flag to defeat the deadman's pedal, to prevent their legs from cramping in the poorly configured foot well and to give themselves freedom of movement in the cabin.

Some of the technical problems included brake failure and power surge problems. After the accident, these were often blamed by some for being the cause of the accident. Many of the survivors of the accident mentioned a large acceleration before the accident occurred. Furthermore, there was an understanding that the emergency brake should seldom be used because the train would accelerate between 5 and 10 km/h (3.1 and 6.2 mph) before the brake came into effect.

Official findings into the accident also blamed an "underdeveloped safety culture". There has been criticism of the way CityRail managed safety issues, resulting in what the NSW Ministry of Transport termed "a reactive approach to risk management".

At the inquiry, Paul Webb, Queen's Counsel, representing the guard on the train, said the guard was in a microsleep at the time of the question, for as much as 30 seconds, which would have removed the opportunity for the guard to halt the train. Webb had also proposed there had been attitudes that the driver was completely in charge of the train, and speeding was not an acceptable reason for the guard to slow or halt the train, which would have been a contributing factor in the accident.

Prior to this derailment, neither training nor procedures mandated the guard to exercise control over the speed of the train by using the emergency brake pipe tap. Apart from the driver being considered to be the sole operator of the train, the emergency brake pipe tap does not provide the same degree of control over the automatic brake as a proper brake valve. The consensus among train crews was that a sudden emergency application from the rear could cause a breakaway and there was some evidence from previous accidents to validate this opinion.[citation needed]

Since this derailment, CityRail training and operational procedures now emphasise the guard's responsibility to monitor the train's speed, and if need be, open the emergency brake pipe tap to stop the train.

Changes implemented[edit]

All CityRail trains now have an additional safety feature, fitted since the accident. In addition to the deadman handle and foot pedal, the driver is now required to acknowledge a vigilance button. If the train's driver does not use the controls and does not acknowledge the vigilance alarm, the vigilance system is activated and makes a penalty brake application. All trains have also been fitted with data loggers to record the driver's and guard's actions as they work the train, as well as the train's speed.[citation needed]

Rescue workers who attended the scene were impeded from accessing the trapped passengers on the train because they did not have the keys required to open the emergency exit doors. Emergency exit mechanisms have all been modified to allow them to be used without requiring a key. Railcorp has installed internal emergency door release mechanisms on all the new trains.

Automatic train protection (ATP) could have prevented this accident. Railcorp has tested ATP systems on the Blue Mountains line in western Sydney, and plans for ATP implementation across the CityRail network are being formulated.[4]

CityRail/RailCorp has incorporated emergency door releases on the insides of the new Waratah trains as a result of the inquiries to this disaster, enabling passengers open the doors themselves in case of an emergency.[5]

References[edit]

External links[edit]