Wikipedia talk:Negotiation

From Wikipedia, the free encyclopedia
Jump to: navigation, search
WikiProject Essays
WikiProject icon This page is within the scope of WikiProject Essays, a collaborative effort to organise and monitor the impact of Wikipedia essays. If you would like to participate, please visit the project page, where you can join the discussion.
 Mid  This page has been rated as Mid-impact on the project's impact scale.
 

re: majority rule?[edit]

Wikipedia policy frowns upon tyranny of the majority point of view. Wikipedia policy salutes principled negotiation resulting in "appropriate mention of all points of view in an article thus improving the quality of the article." -- wikipedia:negotiation

cut[edit]

Viewed inappropriately as game theory, negotiation is about winning or losing.

Wikipedia features direct links to web pages that cover the assigned subject. My Web page http://www.fsteiger.com/Pyramid.html is listed on the first Google page under "Egyptian pyramid ramps." It is also listed on the third Google page under "Egyptian pyramid construction." Yet Wikipedia refuses to list my web page and deletes any links to my web page. The information in my web page provides information regarding pyramid construction that is not available from any other source. It is NOT spam. I really do not understand why Wikipedia refuses to objectively evaluate the information in my web page. Fsteiger 17:57, 22 October 2007 (UTC)

Frank Steiger

Iperbolòide:Quadrica a centro, simmetrica rispetto a tre piani a due a due ortogonali. Sidistinguono in i. una falda (o iperbolici) e in i. a due falde (o ellettici). Assunti come assi cartesiani gli spigoli del triedo principale si possono scrivere le seguenti equazioni canoniche (x*x)/(a+a)(y+y)/(b*b)-(z*z)/(c*c)=1 per gli i. a una falda e (x*x)/(a*a)-(y*y)/(b*b)-(z*z)/(c*c)=1 per quelli a due falde (a,b, e c sono i semiassi). Se a=b,l'i. dicesi di rotazione è può considferarsi come la superfice generata dalla rotazione di un iperbole attorno a uno dei suoi assi. Gli i. tagliati con un piano generano a seconda della posizione del piano secante, un allisse, un iperbole, o una parabola. —Preceding unsigned comment added by 87.6.74.180 (talk) 15:17, 31 October 2009 (UTC)

Su basa intuitiva parola chiave: Marte, oggi 31 10 2009 ore 16.19 . Ciao Manuel. —Preceding unsigned comment added by 87.6.74.180 (talk) 15:20, 31 October 2009 (UTC)