Zinc finger and BTB domain-containing protein 16

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Zinc finger and BTB domain containing 16
Protein ZBTB16 PDB 1buo.png
PDB rendering based on 1buo.
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols ZBTB16 ; PLZF; ZNF145
External IDs OMIM176797 MGI103222 HomoloGene21214 GeneCards: ZBTB16 Gene
RNA expression pattern
PBB GE ZBTB16 205883 at tn.png
More reference expression data
Species Human Mouse
Entrez 7704 235320
Ensembl ENSG00000109906 ENSMUSG00000066687
UniProt Q05516 A3KMN0
RefSeq (mRNA) NM_001018011 NM_001033324
RefSeq (protein) NP_001018011 NP_001028496
Location (UCSC) Chr 11:
113.93 – 114.12 Mb
Chr 9:
48.65 – 48.84 Mb
PubMed search [1] [2]

Zinc finger and BTB domain-containing protein 16 is a protein that in humans is encoded by the ZBTB16 gene.


This gene is a member of the Krueppel C2H2-type zinc-finger protein family and encodes a zinc finger transcription factor that contains nine Kruppel-type zinc finger domains at the carboxyl terminus. This protein is located in the nucleus, is involved in cell cycle progression, and interacts with a histone deacetylase. Specific instances of aberrant gene rearrangement at this locus have been associated with acute promyelocytic leukemia (APL)[1] and physiological roles have been identified in mouse Natural Killer T cells[2][3] and gamma-delta T cells.[4] Alternate transcriptional splice variants have been characterized in human.[5][6]


Zinc finger and BTB domain-containing protein 16 has been shown to interact with ZBTB32,[7] Heparin-binding EGF-like growth factor,[8][9] Histone deacetylase 5,[10][11] HDAC6,[10] FHL2,[12] SIN3B,[13] Nuclear receptor co-repressor 2,[14][15][16] Angiotensin II receptor type 1,[17] HDAC1,[10][13][15] Retinoic acid receptor alpha,[18] SIN3A,[13][15][19] BCL6,[20] RUNX1T1,[21][22] HDAC4,[10][11] BMI1,[23] GATA1,[24] GATA2,[25] Promyelocytic leukemia protein[26] and Calcitriol receptor.[19][27]

See also[edit]


  1. ^ Chen, Zhu; Brand, Nigel J.; Chen, Alex; Chen, Sai-Juan; Tong, Jian-Hua; Wang, Zhen-Yi; Waxman, Samuel; Zelent, Arthur (1993). "Fusion between a novel Krüppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia". The EMBO Journal 12 (3): 1161–7. PMC 413318. PMID 8384553. 
  2. ^ Kovalovsky, Damian; Uche, Olisambu U.; Eladad, Sonia; Hobbs, Robin M.; Yi, Woelsung; Alonzo, Eric; Chua, Kevin; Eidson, Maggie et al. (2008). "The BTB-zinc finger transcriptional regulator, PLZF, controls the development of iNKT cell effector functions". Nature Immunology 9 (9): 1055–64. doi:10.1038/ni.1641. PMC 2662733. PMID 18660811. 
  3. ^ Savage, Adam K.; Constantinides, Michael G.; Han, Jin; Picard, Damien; Martin, Emmanuel; Li, Bofeng; Lantz, Olivier; Bendelac, Albert (2008). "The transcription factor PLZF (Zbtb16) directs the effector program of the NKT cell lineage". Immunity 29 (3): 391–403. doi:10.1016/j.immuni.2008.07.011. PMC 2613001. PMID 18703361. 
  4. ^ Kreslavsky, Taras; Savage, Adam K.; Hobbs, Robin; Gounari, Fotini; Bronson, Roderick; Pereira, Pablo; Pandolfi, Pier Paolo; Bendelac, Albert; von Boehmer, Harald (2009). "TCR-inducible PLZF transcription factor required for innate phenotype of a subset of γδ T cells with restricted TCR diversity". Proceedings of the National Academy of Sciences of the United States of America 106 (30): 12453–8. doi:10.1073/pnas.0903895106. PMC 2718370. PMID 19617548. 
  5. ^ Zhang, T.; Xiong, H.; Kan, L.-X.; Zhang, C.-K.; Jiao, X.-F.; Fu, G.; Zhang, Q.-H.; Lu, L. et al. (1999). "Genomic sequence, structural organization, molecular evolution, and aberrant rearrangement of promyelocytic leukemia zinc finger gene". Proceedings of the National Academy of Sciences of the United States of America 96 (20): 11422–7. doi:10.1073/pnas.96.20.11422. PMC 18049. PMID 10500192. 
  6. ^ "ZBTB16 zinc finger and BTB domain containing 16". Entrez. 4 October 2009. Retrieved 10 October 2009. 
  7. ^ Hoatlin, Maureen E.; Zhi, Yu; Ball, Helen; Silvey, Kirsten; Melnick, Ari; Stone, Stacie; Arai, Sally; Hawe, Nicola et al. (1999). "A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF". Blood 94 (11): 3737–47. PMID 10572087. 
  8. ^ Nanba, Daisuke; Mammoto, Akiko; Hashimoto, Koji; Higashiyama, Shigeki (2003). "Proteolytic release of the carboxy-terminal fragment of proHB-EGF causes nuclear export of PLZF". The Journal of Cell Biology 163 (3): 489–502. doi:10.1083/jcb.200303017. PMC 2173632. PMID 14597771. 
  9. ^ Nanba, D; Toki, F; Higashiyama, S (2004). "Roles of charged amino acid residues in the cytoplasmic domain of proHB-EGF". Biochemical and Biophysical Research Communications 320 (2): 376–82. doi:10.1016/j.bbrc.2004.05.176. PMID 15219838. 
  10. ^ a b c d Chauchereau, A; Mathieu, M; De Saintignon, J; Ferreira, R; Pritchard, LL; Mishal, Z; Dejean, A; Harel-bellan, A (2004). "HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF". Oncogene 23 (54): 8777–84. doi:10.1038/sj.onc.1208128. PMID 15467736. 
  11. ^ a b Lemercier, C; Brocard, MP; Puvion-dutilleul, F; Kao, HY; Albagli, O; Khochbin, S (2002). "Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor". The Journal of Biological Chemistry 277 (24): 22045–52. doi:10.1074/jbc.M201736200. PMID 11929873. 
  12. ^ McLoughlin, P; Ehler, E; Carlile, G; Licht, JD; Schäfer, BW (2002). "The LIM-only protein DRAL/FHL2 interacts with and is a corepressor for the promyelocytic leukemia zinc finger protein". The Journal of Biological Chemistry 277 (40): 37045–53. doi:10.1074/jbc.M203336200. PMID 12145280. 
  13. ^ a b c David, G; Alland, L; Hong, SH; Wong, CW; Depinho, RA; Dejean, A (1998). "Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein". Oncogene 16 (19): 2549–56. doi:10.1038/sj.onc.1202043. PMID 9627120. 
  14. ^ Takahashi, S; McConnell, MJ; Harigae, H; Kaku, M; Sasaki, T; Melnick, AM; Licht, JD (2004). "The Flt3 internal tandem duplication mutant inhibits the function of transcriptional repressors by blocking interactions with SMRT". Blood 103 (12): 4650–8. doi:10.1182/blood-2003-08-2759. PMID 14982881. 
  15. ^ a b c Wong, CW; Privalsky, ML (1998). "Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARalpha, and BCL-6". The Journal of Biological Chemistry 273 (42): 27695–702. doi:10.1074/jbc.273.42.27695. PMID 9765306. 
  16. ^ Hong, SH; David, G; Wong, CW; Dejean, A; Privalsky, ML (1997). "SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor α (RARα) and PLZF-RARα oncoproteins associated with acute promyelocytic leukemia". Proceedings of the National Academy of Sciences of the United States of America 94 (17): 9028–33. doi:10.1073/pnas.94.17.9028. PMC 23013. PMID 9256429. 
  17. ^ Senbonmatsu, T; Saito, T; Landon, EJ; Watanabe, O; Price Jr, E; Roberts, RL; Imboden, H; Fitzgerald, TG et al. (2003). "A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy". The EMBO Journal 22 (24): 6471–82. doi:10.1093/emboj/cdg637. PMC 291832. PMID 14657020. 
  18. ^ Martin, PJ; Delmotte, MH; Formstecher, P; Lefebvre, P (2003). "PLZF is a negative regulator of retinoic acid receptor transcriptional activity". Nuclear receptor 1 (1): 6. doi:10.1186/1478-1336-1-6. PMC 212040. PMID 14521715. 
  19. ^ a b Ward, JO; McConnell, MJ; Carlile, GW; Pandolfi, PP; Licht, JD; Freedman, LP (2001). "The acute promyelocytic leukemia-associated protein, promyelocytic leukemia zinc finger, regulates 1,25-dihydroxyvitamin D(3)-induced monocytic differentiation of U937 cells through a physical interaction with vitamin D(3) receptor". Blood 98 (12): 3290–300. doi:10.1182/blood.V98.12.3290. PMID 11719366. 
  20. ^ Dhordain, P; Albagli, O; Honore, N; Guidez, F; Lantoine, D; Schmid, M; The, HD; Zelent, A; Koken, MH (2000). "Colocalization and heteromerization between the two human oncogene POZ/zinc finger proteins, LAZ3 (BCL6) and PLZF". Oncogene 19 (54): 6240–50. doi:10.1038/sj.onc.1203976. PMID 11175338. 
  21. ^ Melnick, AM; Westendorf, JJ; Polinger, A; Carlile, GW; Arai, S; Ball, HJ; Lutterbach, B; Hiebert, SW; Licht, JD (2000). "The ETO Protein Disrupted in t(8;21)-Associated Acute Myeloid Leukemia Is a Corepressor for the Promyelocytic Leukemia Zinc Finger Protein". Molecular and Cellular Biology 20 (6): 2075–86. doi:10.1128/MCB.20.6.2075-2086.2000. PMC 110824. PMID 10688654. 
  22. ^ Melnick, A; Carlile, GW; McConnell, MJ; Polinger, A; Hiebert, SW; Licht, JD (2000). "AML-1/ETO fusion protein is a dominant negative inhibitor of transcriptional repression by the promyelocytic leukemia zinc finger protein". Blood 96 (12): 3939–47. PMID 11090081. 
  23. ^ Barna, M; Merghoub, T; Costoya, JA; Ruggero, D; Branford, M; Bergia, A; Samori, B; Pandolfi, PP (2002). "Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling". Developmental cell 3 (4): 499–510. doi:10.1016/S1534-5807(02)00289-7. PMID 12408802. 
  24. ^ Labbaye, C; Quaranta, MT; Pagliuca, A; Militi, S; Licht, JD; Testa, U; Peschle, C (2002). "PLZF induces megakaryocytic development, activates Tpo receptor expression and interacts with GATA1 protein". Oncogene 21 (43): 6669–79. doi:10.1038/sj.onc.1205884. PMID 12242665. 
  25. ^ Tsuzuki, S; Enver, T (2002). "Interactions of GATA-2 with the promyelocytic leukemia zinc finger (PLZF) protein, its homologue FAZF, and the t(11;17)-generated PLZF-retinoic acid receptor alpha oncoprotein". Blood 99 (9): 3404–10. doi:10.1182/blood.V99.9.3404. PMID 11964310. 
  26. ^ Koken, MH; Reid, A; Quignon, F; Chelbi-alix, MK; Davies, JM; Kabarowski, JH; Zhu, J; Dong, S et al. (1997). "Leukemia-associated retinoic acid receptor α fusion partners, PML and PLZF, heterodimerize and colocalize to nuclear bodies". Proceedings of the National Academy of Sciences of the United States of America 94 (19): 10255–60. doi:10.1073/pnas.94.19.10255. PMC 23349. PMID 9294197. 
  27. ^ Puccetti, E; Obradovic, D; Beissert, T; Bianchini, A; Washburn, B; Chiaradonna, F; Boehrer, S; Hoelzer, D et al. (2002). "AML-associated translocation products block vitamin D(3)-induced differentiation by sequestering the vitamin D(3) receptor". Cancer Research 62 (23): 7050–8. PMID 12460926. 

Further reading[edit]

External links[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.