Portal:Climate change

From Wikipedia, the free encyclopedia
(Redirected from Portal:Global warming)

The Climate Change Portal

Surface air temperature change over the past 50 years.[1]

In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is primarily caused by humans burning fossil fuels since the Industrial Revolution. Fossil fuel use, deforestation, and some agricultural and industrial practices add to greenhouse gases. These gases absorb some of the heat that the Earth radiates after it warms from sunlight, warming the lower atmosphere. Carbon dioxide, the primary greenhouse gas driving global warming, has grown by about 50% and is at levels unseen for millions of years.

Climate change has an increasingly large impact on the environment. Deserts are expanding, while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost, retreat of glaciers and sea ice decline. Higher temperatures are also causing more intense storms, droughts, and other weather extremes. Rapid environmental change in mountains, coral reefs, and the Arctic is forcing many species to relocate or become extinct. Even if efforts to minimise future warming are successful, some effects will continue for centuries. These include ocean heating, ocean acidification and sea level rise.

Climate change threatens people with increased flooding, extreme heat, increased food and water scarcity, more disease, and economic loss. Human migration and conflict can also be a result. The World Health Organization (WHO) calls climate change the greatest threat to global health in the 21st century. Societies and ecosystems will experience more severe risks without action to limit warming. Adapting to climate change through efforts like flood control measures or drought-resistant crops partially reduces climate change risks, although some limits to adaptation have already been reached. Poorer communities are responsible for a small share of global emissions, yet have the least ability to adapt and are most vulnerable to climate change.

Many climate change impacts have been felt in recent years, with 2023 the warmest on record at +1.48 °C (2.66 °F) since regular tracking began in 1850. Additional warming will increase these impacts and can trigger tipping points, such as melting all of the Greenland ice sheet. Under the 2015 Paris Agreement, nations collectively agreed to keep warming "well under 2 °C". However, with pledges made under the Agreement, global warming would still reach about 2.7 °C (4.9 °F) by the end of the century. Limiting warming to 1.5 °C will require halving emissions by 2030 and achieving net-zero emissions by 2050.

Fossil fuel use can be phased out by conserving energy and switching to energy sources that do not produce significant carbon pollution. These energy sources include wind, solar, hydro, and nuclear power. Cleanly generated electricity can replace fossil fuels for powering transportation, heating buildings, and running industrial processes. Carbon can also be removed from the atmosphere, for instance by increasing forest cover and farming with methods that capture carbon in soil. (Full article...)

Wind turbines near Aalborg, Denmark. Renewable energy projects constitute one common type of carbon offset project.

Carbon offsetting is a carbon trading mechanism that enables entities such as governments or businesses to compensate for (i.e. "offset") their greenhouse gas emissions by investing in projects that reduce, avoid, or remove emissions elsewhere. When an entity invests in a carbon offsetting program, it receives carbon credits. These "tokens" are then used to account for net climate benefits from one entity to another. A carbon credit or offset credit can be bought or sold after certification by a government or independent certification body. One carbon offset or credit represents a reduction, avoidance or removal of one metric Tonne of carbon dioxide or its carbon dioxide-equivalent (CO2e).

Offset projects that take place in the future can be considered to be a type of promissory note. The purchaser of the offset credit pays carbon market rates for the credits. In turn they receive a promise that the purchaser's greenhouse emissions generated in the present (e.g. a ten-hour international flight) will be offset by elimination of an equal amount at some point in the future (e.g. 10 to 20 years for planting 55 seedlings). Offsets that were generated in the past are legitimate only if they were in addition to reductions that would have happened anyway.

A variety of greenhouse gas reduction projects can create offsets and credits. These include forestry projects (avoidance of logging, sapling planting, etc.), renewable energy projects (wind farms, biomass energy, biogas digesters, hydroelectric dams, etc.), as well as energy efficiency projects. Further projects include carbon dioxide removal projects, carbon capture and storage projects, and the elimination of methane emissions in various settings such as landfills. (Full article...)
List of selected articles

Selected picture – show another

The basic function of a space sunshade to mitigate global warming. A 1000 kilometre diameter lens is sufficient, and much smaller than what is shown in this simplified image. As a Fresnel lens it would be only a few millimeters thick.

WikiProjects

In the news

Selected biography – show another

Lavanya Rajamani (born 1973) is an Indian lawyer, author and professor whose area of expertise is international climate change law, environmental law, and policy. She is currently a professor of International Environmental Law at the Faculty of Law, University of Oxford, a Yamani Fellow in Public International Law at St Peter's College, Oxford, and a visiting professor at the Centre for Policy Research.

She was the first Rhodes Scholar of National Law School of India University and is the youngest Indian academic to be invited to offer a course in public international law at the Hague Academy of International Law in the Netherlands. (Full article...)

General images

The following are images from various climate-related articles on Wikipedia.

Did you know – show another

Seagrass meadows are major carbon sinks and highly productive nurseries for many marine species
... that seagrass meadows hold twice as much carbon dioxide as rain forests per hectare?
Other "Did you know" facts...

Related portals

Selected panorama – show another

The Global Historical Climatology Network (GHCN) is one of the primary reference compilations of temperature data used for climatology, and is the foundation of the GISTEMP Temperature Record. This map shows the 7,280 fixed temperature stations in the GHCN catalog color coded by the length of the available record. Sites that are actively updated in the database (2,277) are marked as "active" and shown in large symbols, other sites are marked as "historical" and shown in small symbols. In some cases, the "historical" sites are still collecting data but due to reporting and data processing delays (of more than a decade in some cases) they do not contribute to current temperature estimates. As is evident from this plot, the most densely instrumented portion of the globe is in the United States, while Antarctica is the most sparsely instrumented land area. Parts of the Pacific and other oceans are more isolated from fixed temperature stations, but this is supplemented by volunteer observing ships that record temperature information during their normal travels. This image shows 3,832 records longer than 50 years, 1,656 records longer than 100 years, and 226 records longer than 150 years. The longest record in the collection began in Berlin in 1701 and is still collected in the present day.

Topics


Categories

Web resources


Things to do

Wikimedia

References

  1. ^ "GISS Surface Temperature Analysis (v4)". NASA. Retrieved 12 January 2024.
  2. ^ Bhargav, Vishal (2021-10-11). "Climate Change Is Making India's Monsoon More Erratic". www.indiaspend.com. Retrieved 2021-10-11.
  3. ^ Tiwari, Dr Pushp Raj; Conversation, The. "Nobel prize: Why climate modellers deserved the physics award – they've been proved right again and again". phys.org. Retrieved 2021-10-11.
Discover Wikipedia using portals

Purge server cache