Jump to content

Norbert Wiener: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Jm34harvey (talk | contribs)
→‎External links: added reference to Living Internet article
Wikification
Line 27: Line 27:
|footnotes =
|footnotes =
}}
}}
'''Norbert Wiener''' ([[November 26]], [[1894]], [[Columbia, Missouri]] – [[March 18]], [[1964]], [[Stockholm]] [[Sweden]]) was an [[United States|American]] theoretical and [[applied math|applied]] [[mathematician]]. He was a pioneer in the study of [[stochastic processes|stochastic]] and [[noise]] processes, contributing work relevant to [[electronic engineering]], [[electronic communication]], and [[control system]]s. Wiener also founded [[cybernetics]], a field that formalizes the notion of [[feedback]] and has implications for [[engineering]], [[systems control]], [[computer science]], [[biology]], [[philosophy]], and the organization of [[society]].
'''Norbert Wiener''' ([[November 26]], [[1894]], [[Columbia, Missouri]] – [[March 18]], [[1964]], [[Stockholm]] [[Sweden]]) was an [[United States|American]] theoretical and [[applied math|applied]] [[mathematician]].
Wiener was a pioneer in the study of [[stochastic processes|stochastic]] and [[noise]] processes, contributing work relevant to [[electronic engineering]], [[electronic communication]], and [[control system]]s.
Wiener also founded [[cybernetics]], a field that formalizes the notion of [[feedback]] and has implications for [[engineering]], [[systems control]], [[computer science]], [[biology]], [[philosophy]], and the organization of [[society]].


==Biography==
==Biography==
=== Youth ===
Wiener was the first child of Leo Wiener, a [[Poland|Polish]]-[[Jew]]ish immigrant, and Bertha Kahn, of [[Germans|German]]-[[Jewish]] descent. Employing teaching methods of his own invention, Leo educated Norbert at home until 1903, except for a brief interlude when Norbert was 7 years of age. Thanks to his father's tutelage and his own abilities, Wiener became a [[child prodigy]]. The first volume of Wiener's autobiography dwells on this period in considerable detail. Earning his living teaching [[German language|German]] and [[Slavic languages]], Leo read widely and accumulated a personal library from which the young Norbert benefited much. Leo also had ample ability in mathematics, and tutored his son in the subject until he left home.
Wiener was the first child of Leo Wiener, a [[Poland|Polish]]-[[Jew]]ish immigrant, and Bertha Kahn, of [[Germans|German]]-[[Jewish]] descent. Employing teaching methods of his own invention, Leo educated Norbert at home until 1903, except for a brief interlude when Norbert was 7 years of age. Thanks to his father's tutelage and his own abilities, Wiener became a [[child prodigy]]. Earning his living teaching [[German language|German]] and [[Slavic languages]], Leo read widely and accumulated a personal library from which the young Norbert benefited much. Leo also had ample ability in mathematics, and tutored his son in the subject until he left home.


After graduating from [[Ayer High School]] in 1906 at 11 years of age, Wiener entered [[Tufts College]]. He was awarded a [[Bachelor of Arts|BA]] in mathematics in 1909 at the age of 14, whereupon he began graduate studies in [[zoology]] at [[Harvard]]. In 1910 he transferred to [[Cornell University|Cornell]] to study philosophy.
After graduating from [[Ayer High School]] in 1906 at 11 years of age, Wiener entered [[Tufts College]]. He was awarded a [[Bachelor of Arts|BA]] in mathematics in 1909 at the age of 14, whereupon he began graduate studies in [[zoology]] at [[Harvard]]. In 1910 he transferred to [[Cornell University|Cornell]] to study philosophy.


=== Harvard ===
The next year he returned to Harvard, while still continuing his philosophical studies. Back at Harvard, Wiener came under the influence of [[Edward Vermilye Huntington]], whose mathematical interests ranged from axiomatic foundations to problems posed by engineering. Harvard awarded Wiener a [[Ph.D.]] in 1912, when he was a mere 18, for a dissertation on [[mathematical logic]], supervised by [[Karl Schmidt]], whose essential results were published as Wiener (1914). In that dissertation, he was the first to see that the [[ordered pair]] can be defined in terms of elementary [[set theory]]. Hence [[relation (mathematics)|relations]] can be wholly grounded in [[set theory]], so that the theory of relations does not require any axioms or primitive notions distinct from those of set theory. In 1921, [[Kuratowski]] proposed a simplification of Wiener's definition of the ordered pair, and that simplification has been in common use ever since.
The next year he returned to Harvard, while still continuing his philosophical studies. Back at Harvard, Wiener came under the influence of [[Edward Vermilye Huntington]], whose mathematical interests ranged from axiomatic foundations to problems posed by engineering. Harvard awarded Wiener a [[Ph.D.]] in 1912, when he was a mere 18, for a dissertation on [[mathematical logic]], supervised by [[Karl Schmidt]], whose essential results were published as Wiener (1914). In that dissertation, he was the first to see that the [[ordered pair]] can be defined in terms of elementary [[set theory]]. Hence [[relation (mathematics)|relations]] can be wholly grounded in [[set theory]], so that the theory of relations does not require any axioms or primitive notions distinct from those of set theory. In 1921, [[Kuratowski]] proposed a simplification of Wiener's definition of the ordered pair, and that simplification has been in common use ever since.


In 1914, Wiener travelled to Europe, to study under [[Bertrand Russell]] and [[G. H. Hardy]] at [[University of Cambridge|Cambridge University]], and under [[David Hilbert]] and [[Edmund Landau]] at the [[University of Göttingen]]. In 1915-16, he taught philosophy at Harvard, then worked for [[General Electric]] and wrote for the [[Encyclopedia Americana]]. When [[World War I]] broke out, [[Oswald Veblen]] invited him to work on [[ballistics]] at the [[Aberdeen Proving Ground]] in Maryland. Thus Wiener, an eventual pacifist, wore a uniform 1917-18. Living and working with other mathematicians strengthened and deepened his interest in mathematics.
In 1914, Wiener travelled to Europe, to study under [[Bertrand Russell]] and [[G. H. Hardy]] at [[University of Cambridge|Cambridge University]], and under [[David Hilbert]] and [[Edmund Landau]] at the [[University of Göttingen]]. In 1915-16, he taught philosophy at Harvard, then worked for [[General Electric]] and wrote for the [[Encyclopedia Americana]]. When [[World War I]] broke out, [[Oswald Veblen]] invited him to work on [[ballistics]] at the [[Aberdeen Proving Ground]] in Maryland. Thus Wiener, an eventual pacifist, wore a uniform 1917-18. Living and working with other mathematicians strengthened and deepened his interest in mathematics.


=== After the war===
After the war, Wiener was unable to secure a position at Harvard because he was Jewish (despite his father being the first tenured Jew at Harvard), and was rejected for a position at the [[University of Melbourne]]. At [[William Fogg Osgood|W. F. Osgood]]'s invitation, Wiener became an instructor in mathematics at [[Massachusetts Institute of Technology|MIT]], where he spent the remainder of his career, rising to Professor.
After the war, Wiener was unable to secure a position at Harvard because he was Jewish (despite his father being the first tenured Jew at Harvard), and was rejected for a position at the [[University of Melbourne]]. At [[William Fogg Osgood|W. F. Osgood]]'s invitation, Wiener became an instructor in mathematics at [[Massachusetts Institute of Technology|MIT]], where he spent the remainder of his career, rising to Professor.


Line 44: Line 51:
In 1926, Wiener's parents arranged his marriage to a German immigrant, Margaret Engemann, who was not Jewish; they had two daughters.
In 1926, Wiener's parents arranged his marriage to a German immigrant, Margaret Engemann, who was not Jewish; they had two daughters.


=== During and after World War II ===
During [[World War II]], his work on the automatic aiming and firing of [[anti-aircraft gun]]s led Wiener to [[communication theory]] and eventually to formulate [[cybernetics]]. After the war, his prominence helped MIT to recruit a research team in [[cognitive science]], made up of researchers in [[neuropsychology]] and the mathematics and [[biophysics]] of the nervous system, including [[Warren Sturgis McCulloch]] and [[Walter Pitts]]. These men went on to make pioneering contributions to [[computer science]] and [[artificial intelligence]]. Shortly after the group was formed, Wiener broke off all contact with its members. Speculation still flourishes as to why this split occurred.
During [[World War II]], his work on the automatic aiming and firing of [[anti-aircraft gun]]s led Wiener to [[communication theory]] and eventually to formulate [[cybernetics]]. After the war, his prominence helped MIT to recruit a research team in [[cognitive science]], made up of researchers in [[neuropsychology]] and the mathematics and [[biophysics]] of the nervous system, including [[Warren Sturgis McCulloch]] and [[Walter Pitts]]. These men went on to make pioneering contributions to [[computer science]] and [[artificial intelligence]]. Shortly after the group was formed, Wiener broke off all contact with its members. Speculation still flourishes as to why this split occurred.


Line 50: Line 58:
Wiener declined an invitation to join the [[Manhattan Project]]. After the war, he became increasingly concerned with what he saw as political interference in scientific research, and the militarization of science. His article "A Scientist Rebels" in the January 1947 issue of ''[[The Atlantic Monthly]]'' urged scientists to consider the ethical implications of their work. After the war, he refused to accept any government funding or to work on military projects. The way Wiener's stance towards nuclear weapons and the Cold War contrasted with that of [[John von Neumann]] is the central theme of Heims (1980).
Wiener declined an invitation to join the [[Manhattan Project]]. After the war, he became increasingly concerned with what he saw as political interference in scientific research, and the militarization of science. His article "A Scientist Rebels" in the January 1947 issue of ''[[The Atlantic Monthly]]'' urged scientists to consider the ethical implications of their work. After the war, he refused to accept any government funding or to work on military projects. The way Wiener's stance towards nuclear weapons and the Cold War contrasted with that of [[John von Neumann]] is the central theme of Heims (1980).


==Awards and honors==
=== Awards and honors ===
[[Image:Wiener_process_3d.png|thumb|230px|In the mathematical field of probability, the [[Wiener sausage]] is a neighborhood of the trace of a [[Brownian motion]] up to a time ''t'', given by taking all points within a fixed distance of Brownian motion. It can be visualized as a sausage of fixed radius whose centerline is Brownian motion.]]{{wikiquote}}
*Wiener won the [[Bôcher Prize]] in 1933 and the [[National Medal of Science]] in 1963 (Presented by President Johnson at a White House Ceremony in January 1964.), shortly before his death.
*Wiener won the [[Bôcher Prize]] in 1933 and the [[National Medal of Science]] in 1963 (Presented by President Johnson at a White House Ceremony in January 1964.), shortly before his death.
*The [[Norbert Wiener Prize in Applied Mathematics]] was endowed in 1967 in honor of Norbert Wiener by MIT's mathematics department and is provided jointly by the [[American Mathematical Society]] and [[Society for Industrial and Applied Mathematics]].
*The [[Norbert Wiener Prize in Applied Mathematics]] was endowed in 1967 in honor of Norbert Wiener by MIT's mathematics department and is provided jointly by the [[American Mathematical Society]] and [[Society for Industrial and Applied Mathematics]].
Line 58: Line 65:
*The [[Wiener sausage]] was named for him.
*The [[Wiener sausage]] was named for him.


==See also==
== Work ==
Wiener was as a pioneer in the study of [[stochastic processes|stochastic]] and [[noise]] processes, contributing work relevant to [[electronic engineering]], [[electronic communication]], and [[control system]]s.


Wiener also founded [[cybernetics]], a field that formalizes the notion of [[feedback]] and has implications for [[engineering]], [[systems control]], [[computer science]], [[biology]], [[philosophy]], and the organization of [[society]].
* [[Wiener equation]]
* [[Wiener filter]]
* [[Wiener process]]
* [[Wiener's tauberian theorem]]
* [[Paley–Wiener theorem]]
* [[Wiener-Khinchin theorem]]
* [[Abstract Wiener space]]


[[Image:Wiener_process_3d.png|thumb|230px|In the mathematical field of probability, the [[Wiener sausage]] is a neighborhood of the trace of a [[Brownian motion]] up to a time ''t'', given by taking all points within a fixed distance of Brownian motion. It can be visualized as a sausage of fixed radius whose centerline is Brownian motion.]]
==Writings==
=== Wiener equation ===
A simple mathematical representation of [[Brownian motion]], the [[Wiener equation]], named after Wiener, assumes the current [[velocity]] of a [[fluid]] particle fluctuates [[random

=== Wiener filter ===
In signal processing, the [[Wiener filter]] is a [[filter (signal processing)|filter]] proposed by Wiener during the 1940s and published in 1949. Its purpose is to reduce the amount of [[noise]] present in a signal by comparison with an estimation of the desired noiseless signal.

=== In mathematics ===
The [[Wiener process]] is a continuous-time [[stochastic process]] named in honor of Wiener. It is often called ''[[Brownian motion]]''', after [[Robert Brown (botanist)|Robert Brown]]. It is one of the best known [[Lévy process]]es, càdlàg stochastic processes with stationary statistical independence increments, and occurs frequently in pure and applied mathematics, economics and physics.

[[Wiener's tauberian theorem]] is a 1932 result of Wiener. It put the capstone on the field of [[tauberian theorem]]s in [[summability theory]], on the face of it a chapter of [[real analysis]], by showing that most of the known results could be encapsulated in a principle from [[harmonic analysis]]. As now formulated, the theorem of Wiener has no obvious connection to tauberian theorems, which deal with [[infinite series]]; the translation from results formulated for integrals, or using the language of [[functional analysis]] and [[Banach algebra]]s, is however a relatively routine process once the idea is grasped.

The [[Paley–Wiener theorem]] relates growth properties of [[entire function]]s on '''C'''<sup>n</sup> and Fourier transformation of Schwartz distributions of compact support.

The [[Wiener–Khinchin theorem]], also known as the ''Wiener–Khintchine theorem'' and sometimes as the ''Khinchin–Kolmogorov theorem'', states that the power spectral density of a wide-sense-stationary random process is the Fourier transform of the corresponding autocorrelation function.

An [[abstract Wiener space]] is a mathematical object in [[measure theory]], used to construct a "decent", strictly positive and locally finite measure on an infinite-dimensional vector space. Wiener's original construction only applied to the space of real-valued continuous paths on the unit interval, known as [[classical Wiener space]]. Leonard Gross provided the generalization to the case of a general [[separable space|separable]] [[Banach space]].

== Publications ==
* 1914, "A simplification in the logic of relations" in [[Jean van Heijenoort]], 1967. ''From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931''. Harvard Univ. Press: 224-27.
* 1914, "A simplification in the logic of relations" in [[Jean van Heijenoort]], 1967. ''From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931''. Harvard Univ. Press: 224-27.
* 1930, ''Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications''. MIT Press. (Originally classified, finally published in 1949; the 1942 version of this monograph was nicknamed "the yellow peril" because of the color of the cover and the difficulty of the subject. [http://jfwpage.net/works.html])
* 1930, ''Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications''. MIT Press. (Originally classified, finally published in 1949; the 1942 version of this monograph was nicknamed "the yellow peril" because of the color of the cover and the difficulty of the subject. [http://jfwpage.net/works.html])
Line 86: Line 106:
* From The Cybernetics Society [http://www.cybsoc.org/wiener.htm Publications of Norbert Wiener]
* From The Cybernetics Society [http://www.cybsoc.org/wiener.htm Publications of Norbert Wiener]


==References==
== References ==
{{references}}

== Further reading ==
* Bynum, Terrell W., "[http://web.comlab.ox.ac.uk/oucl/research/areas/ieg/e-library/bynum.pdf Norbert Wiener's Vision: The impact of "the automatic age" on our moral lives.]"
* Bynum, Terrell W., "[http://web.comlab.ox.ac.uk/oucl/research/areas/ieg/e-library/bynum.pdf Norbert Wiener's Vision: The impact of "the automatic age" on our moral lives.]"
* Conway, F., and Siegelman, J., 2005. ''Dark Hero of the Information Age: in search of Norbert Wiener, the father of cybernetics''. Basic Books, New York. 423pp. ISBN 0-7382-0368-8
* Conway, F., and Siegelman, J., 2005. ''Dark Hero of the Information Age: in search of Norbert Wiener, the father of cybernetics''. Basic Books, New York. 423pp. ISBN 0-7382-0368-8
Line 98: Line 121:
A brief profile of Dr. Wiener is given in [[The Observer]] [[newspaper]], Sunday, 28 January 1951.
A brief profile of Dr. Wiener is given in [[The Observer]] [[newspaper]], Sunday, 28 January 1951.


==External links==
== External links ==
{{wikiquote}}
*[http://www.livinginternet.com/i/ii_wiener.htm Norbert Winer and Cybernetics] &ndash; Living Internet
*[http://www.livinginternet.com/i/ii_wiener.htm Norbert Winer and Cybernetics] &ndash; Living Internet
*{{MacTutor Biography|id=Wiener_Norbert}}
*{{MacTutor Biography|id=Wiener_Norbert}}
*{{MathGenealogy|id=25222}}
*{{MathGenealogy|id=25222}}



{{Cybernetics}}
{{Cybernetics}}

Revision as of 23:52, 16 May 2008

Norbert Wiener
File:Norbert Wiener 3.JPG
Born(1894-11-26)November 26, 1894
DiedMarch 18, 1964(1964-03-18) (aged 69)
NationalityAmerican
Alma materTufts College BA 1909
Harvard University PhD 1912
Scientific career
FieldsMathematics
Cybernetics
InstitutionsMassachusetts Institute of Technology
Doctoral advisorKarl Schmidt
Josiah Royce
Doctoral studentsAmar Bose
Shikao Ikehara
Norman Levinson

Norbert Wiener (November 26, 1894, Columbia, MissouriMarch 18, 1964, Stockholm Sweden) was an American theoretical and applied mathematician.

Wiener was a pioneer in the study of stochastic and noise processes, contributing work relevant to electronic engineering, electronic communication, and control systems.

Wiener also founded cybernetics, a field that formalizes the notion of feedback and has implications for engineering, systems control, computer science, biology, philosophy, and the organization of society.

Biography

Youth

Wiener was the first child of Leo Wiener, a Polish-Jewish immigrant, and Bertha Kahn, of German-Jewish descent. Employing teaching methods of his own invention, Leo educated Norbert at home until 1903, except for a brief interlude when Norbert was 7 years of age. Thanks to his father's tutelage and his own abilities, Wiener became a child prodigy. Earning his living teaching German and Slavic languages, Leo read widely and accumulated a personal library from which the young Norbert benefited much. Leo also had ample ability in mathematics, and tutored his son in the subject until he left home.

After graduating from Ayer High School in 1906 at 11 years of age, Wiener entered Tufts College. He was awarded a BA in mathematics in 1909 at the age of 14, whereupon he began graduate studies in zoology at Harvard. In 1910 he transferred to Cornell to study philosophy.

Harvard

The next year he returned to Harvard, while still continuing his philosophical studies. Back at Harvard, Wiener came under the influence of Edward Vermilye Huntington, whose mathematical interests ranged from axiomatic foundations to problems posed by engineering. Harvard awarded Wiener a Ph.D. in 1912, when he was a mere 18, for a dissertation on mathematical logic, supervised by Karl Schmidt, whose essential results were published as Wiener (1914). In that dissertation, he was the first to see that the ordered pair can be defined in terms of elementary set theory. Hence relations can be wholly grounded in set theory, so that the theory of relations does not require any axioms or primitive notions distinct from those of set theory. In 1921, Kuratowski proposed a simplification of Wiener's definition of the ordered pair, and that simplification has been in common use ever since.

In 1914, Wiener travelled to Europe, to study under Bertrand Russell and G. H. Hardy at Cambridge University, and under David Hilbert and Edmund Landau at the University of Göttingen. In 1915-16, he taught philosophy at Harvard, then worked for General Electric and wrote for the Encyclopedia Americana. When World War I broke out, Oswald Veblen invited him to work on ballistics at the Aberdeen Proving Ground in Maryland. Thus Wiener, an eventual pacifist, wore a uniform 1917-18. Living and working with other mathematicians strengthened and deepened his interest in mathematics.

After the war

After the war, Wiener was unable to secure a position at Harvard because he was Jewish (despite his father being the first tenured Jew at Harvard), and was rejected for a position at the University of Melbourne. At W. F. Osgood's invitation, Wiener became an instructor in mathematics at MIT, where he spent the remainder of his career, rising to Professor.

In 1926, Wiener returned to Europe as a Guggenheim scholar. He spent most of his time at Göttingen and with Hardy at Cambridge, working on Brownian motion, the Fourier integral, Dirichlet's problem, harmonic analysis, and the Tauberian theorems.

In 1926, Wiener's parents arranged his marriage to a German immigrant, Margaret Engemann, who was not Jewish; they had two daughters.

During and after World War II

During World War II, his work on the automatic aiming and firing of anti-aircraft guns led Wiener to communication theory and eventually to formulate cybernetics. After the war, his prominence helped MIT to recruit a research team in cognitive science, made up of researchers in neuropsychology and the mathematics and biophysics of the nervous system, including Warren Sturgis McCulloch and Walter Pitts. These men went on to make pioneering contributions to computer science and artificial intelligence. Shortly after the group was formed, Wiener broke off all contact with its members. Speculation still flourishes as to why this split occurred.

Wiener went on to break new ground in cybernetics, robotics, computer control, and automation. He shared his theories and findings with other researchers, and credited the contributions of others. These included Soviet researchers and their findings. Wiener's connections with them placed him under suspicion during the Cold War. He was a strong advocate of automation to improve the standard of living, and to overcome economic underdevelopment. His ideas became influential in India, whose government he advised during the 1950s.

Wiener declined an invitation to join the Manhattan Project. After the war, he became increasingly concerned with what he saw as political interference in scientific research, and the militarization of science. His article "A Scientist Rebels" in the January 1947 issue of The Atlantic Monthly urged scientists to consider the ethical implications of their work. After the war, he refused to accept any government funding or to work on military projects. The way Wiener's stance towards nuclear weapons and the Cold War contrasted with that of John von Neumann is the central theme of Heims (1980).

Awards and honors

Work

Wiener was as a pioneer in the study of stochastic and noise processes, contributing work relevant to electronic engineering, electronic communication, and control systems.

Wiener also founded cybernetics, a field that formalizes the notion of feedback and has implications for engineering, systems control, computer science, biology, philosophy, and the organization of society.

In the mathematical field of probability, the Wiener sausage is a neighborhood of the trace of a Brownian motion up to a time t, given by taking all points within a fixed distance of Brownian motion. It can be visualized as a sausage of fixed radius whose centerline is Brownian motion.

Wiener equation

A simple mathematical representation of Brownian motion, the Wiener equation, named after Wiener, assumes the current velocity of a fluid particle fluctuates [[random

Wiener filter

In signal processing, the Wiener filter is a filter proposed by Wiener during the 1940s and published in 1949. Its purpose is to reduce the amount of noise present in a signal by comparison with an estimation of the desired noiseless signal.

In mathematics

The Wiener process is a continuous-time stochastic process named in honor of Wiener. It is often called Brownian motion', after Robert Brown. It is one of the best known Lévy processes, càdlàg stochastic processes with stationary statistical independence increments, and occurs frequently in pure and applied mathematics, economics and physics.

Wiener's tauberian theorem is a 1932 result of Wiener. It put the capstone on the field of tauberian theorems in summability theory, on the face of it a chapter of real analysis, by showing that most of the known results could be encapsulated in a principle from harmonic analysis. As now formulated, the theorem of Wiener has no obvious connection to tauberian theorems, which deal with infinite series; the translation from results formulated for integrals, or using the language of functional analysis and Banach algebras, is however a relatively routine process once the idea is grasped.

The Paley–Wiener theorem relates growth properties of entire functions on Cn and Fourier transformation of Schwartz distributions of compact support.

The Wiener–Khinchin theorem, also known as the Wiener–Khintchine theorem and sometimes as the Khinchin–Kolmogorov theorem, states that the power spectral density of a wide-sense-stationary random process is the Fourier transform of the corresponding autocorrelation function.

An abstract Wiener space is a mathematical object in measure theory, used to construct a "decent", strictly positive and locally finite measure on an infinite-dimensional vector space. Wiener's original construction only applied to the space of real-valued continuous paths on the unit interval, known as classical Wiener space. Leonard Gross provided the generalization to the case of a general separable Banach space.

Publications

  • 1914, "A simplification in the logic of relations" in Jean van Heijenoort, 1967. From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931. Harvard Univ. Press: 224-27.
  • 1930, Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications. MIT Press. (Originally classified, finally published in 1949; the 1942 version of this monograph was nicknamed "the yellow peril" because of the color of the cover and the difficulty of the subject. [1])
  • 1948, Cybernetics: Or the Control and Communication in the Animal and the Machine. Cambridge, MA: MIT Press.
  • 1950, The Human Use of Human Beings. Da Capo Press.
  • 1958, Nonlinear Problems in Random Theory. MIT Press & Wiley.
  • 1966, Generalized Harmonic Analysis and Tauberian Theorems. MIT Press.
  • 1966, God & Golem, Inc.: A Comment on Certain Points Where Cybernetics Impinges on Religion. MIT Press.
  • 1988, The Fourier Integral and Certain of its Applications (Cambridge Mathematical Library). Cambridge Univ. Press.
  • 1994, Invention: The Care and Feeding of Ideas. MIT Press.

Autobiography:

  • 1953. Ex-Prodigy: My Childhood and Youth. MIT Press.
  • 1956. I am a Mathematician. MIT Press.

Bibliography:

References

Further reading

  • Bynum, Terrell W., "Norbert Wiener's Vision: The impact of "the automatic age" on our moral lives."
  • Conway, F., and Siegelman, J., 2005. Dark Hero of the Information Age: in search of Norbert Wiener, the father of cybernetics. Basic Books, New York. 423pp. ISBN 0-7382-0368-8
  • Ivor Grattan-Guinness, 2000. The Search for Mathematical Roots 1870-1940. Princeton Uni. Press.
  • Bluma, Lars, 2005. Norbert Wiener und die Entstehung der Kybernetik im Zweiten Weltkrieg. Münster.
  • Heims, Steve J., 1980. John von Neumann and Norbert Wiener: From Mathematics to the Technologies of Life and Death. MIT Press.
  • Heims, Steve J., 1993. Constructing a Social Science for Postwar America. The Cybernetics Group, 1946-1953. MIT Press.
  • Ilgauds, Hans Joachim, 1980. Norbert Wiener.
  • Masani, P. Rustom, 1990. Norbert Wiener 1894-1964. Birkhauser.

A brief profile of Dr. Wiener is given in The Observer newspaper, Sunday, 28 January 1951.

  • Norbert Winer and Cybernetics – Living Internet
  • O'Connor, John J.; Robertson, Edmund F., "Norbert Wiener", MacTutor History of Mathematics Archive, University of St Andrews
  • Norbert Wiener at the Mathematics Genealogy Project

Template:Persondata