Jump to content

Talk:Damping: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
Line 18: Line 18:
They cant both be right<br />
They cant both be right<br />
zeta=h/2/sqrt(k/m) vs. zeta=h/2/sqrt(h*k) <br />
zeta=h/2/sqrt(k/m) vs. zeta=h/2/sqrt(h*k) <br />

== Regarding the claim that bells ring with an almost pure sinusoidal tone ==

I think the argument for this is very unclear. In my experience, and as far as I know, bells are not constructed to make pure tones. On the contrary, they make a very dissonant noise.

I suppose the article's claim can be translated to that a high quality bell can be viewed as an underdamped, linear time-invariant system, and that it thus, after an initial impulse, will follow the curve of a decaying exponential (zero) plus an exponentially decaying sinusoid. I do not believe the premise is correct, and thus the conclusion is not obvious to me.

"High quality bells" are not mentioned in the article about the pure tone.

Revision as of 15:11, 6 December 2009

WikiProject iconMathematics Stub‑class Low‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
StubThis article has been rated as Stub-class on Wikipedia's content assessment scale.
LowThis article has been rated as Low-priority on the project's priority scale.

I agree

I think it should be merged there is no reason to separate a constant from its concept. —Preceding unsigned comment added by 71.127.184.53 (talk) 17:57, 3 October 2007 (UTC)[reply]

is this right?

zeta=h/2/sqrt(h*k) ??
Angular velocity is w^2=k/m
and damping coefficient is h=2*zeta*w
or
zeta=h/2/w
or
zeta=h/2/sqrt(k/m)

They cant both be right
zeta=h/2/sqrt(k/m) vs. zeta=h/2/sqrt(h*k)

Regarding the claim that bells ring with an almost pure sinusoidal tone

I think the argument for this is very unclear. In my experience, and as far as I know, bells are not constructed to make pure tones. On the contrary, they make a very dissonant noise.

I suppose the article's claim can be translated to that a high quality bell can be viewed as an underdamped, linear time-invariant system, and that it thus, after an initial impulse, will follow the curve of a decaying exponential (zero) plus an exponentially decaying sinusoid. I do not believe the premise is correct, and thus the conclusion is not obvious to me.

"High quality bells" are not mentioned in the article about the pure tone.