Jump to content

Semantics (computer science)

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Timberframe (talk | contribs) at 22:06, 23 April 2011 (Further reading: fix author's name per link). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In programming language theory, semantics is the field concerned with the rigorous mathematical study of the meaning of programming languages and models of computation. The formal semantics of a language is given by a mathematical model that describes the possible computations described by the language.

Overview

The field of formal semantics encompasses all of the following:

  • The definition of semantic models
  • The relations between different semantic models
  • The relations between different approaches to meaning
  • The relation between computation and the underlying mathematical structures from fields such as logic, set theory, model theory, category theory, etc.

It has close links with other areas of computer science such as programming language design, type theory, compilers and interpreters, program verification and model checking.

Approaches

There are many approaches to formal semantics; these approaches belong to three major classes:

  • Denotational semantics, whereby each phrase in the language is translated into a denotation, i.e. a phrase in some other language. Denotational semantics loosely corresponds to compilation, although the "target language" is usually a mathematical formalism rather than another computer language. For example, denotational semantics of functional languages often translates the language into domain theory;
  • Operational semantics, whereby the execution of the language is described directly (rather than by translation). Operational semantics loosely corresponds to interpretation, although again the "implementation language" of the interpreter is generally a mathematical formalism. Operational semantics may define an abstract machine (such as the SECD machine), and give meaning to phrases by describing the transitions they induce on states of the machine. Alternatively, as with the pure lambda calculus, operational semantics can be defined via syntactic transformations on phrases of the language itself;
  • Axiomatic semantics, whereby one gives meaning to phrases by describing the logical axioms that apply to them. Axiomatic semantics makes no distinction between a phrase's meaning and the logical formulas that describe it; its meaning is exactly what can be proven about it in some logic. The canonical example of axiomatic semantics is Hoare logic.

The distinctions between the three broad classes of approaches can sometimes be vague, but all known approaches to formal semantics use the above techniques, or some combination thereof.

Apart from the choice between denotational, operational, or axiomatic approaches, most variation in formal semantic systems arises from the choice of supporting mathematical formalism.

Variations

Some variations of formal semantics include the following:

Describing relationships

For a variety of reasons, one might wish to describe the relationships between different formal semantics. For example:

  • To prove that a particular operational semantics for a language satisfies the logical formulas of an axiomatic semantics for that language. Such a proof demonstrates that it is "sound" to reason about a particular (operational) interpretation strategy using a particular (axiomatic) proof system.
  • To prove that operational semantics over a high-level machine is related by a bisimulation with the semantics over a low-level machine, whereby the low-level abstract machine contains more primitive operations than the high-level abstract machine definition of a given language. Such a proof demonstrates that the low-level machine "faithfully implements" the high-level machine.

It is also possible to relate multiple semantics through abstractions via the theory of abstract interpretation.

See also

Further reading

Textbooks
Lecture notes
  • Aaby, Anthony (2004). Introduction to Programming Languages. Semantics.