# 100,000

 ← 99999 100000 100001 →
Cardinalone hundred thousand
Ordinal100000th
(one hundred thousandth)
Factorization25× 55
Greek numeral${\displaystyle {\stackrel {\iota }{\mathrm {M} }}}$
Roman numeralC
Unicode symbol(s)
Binary110000110101000002
Ternary120020112013
Quaternary1201222004
Quinary112000005
Senary20505446
Octal3032408
Duodecimal49A5412
VigesimalCA0020
Base 36255S36

100,000 (one hundred thousand) is the natural number following 99,999 and preceding 100,001. In scientific notation, it is written as 105.

## Terms for 100000

In India, Pakistan and South Asia, one hundred thousand is called a lakh, and is written as 1,00,000. The Thai, Lao, Khmer and Vietnamese languages also have separate words for this number: แสน, ແສນ, សែន [saen] and ức respectively. No other major language has a special word for this number, preferring to refer to it as a multiple of smaller numbers.[citation needed]

In Cyrillic numerals, it is known as the legion (легион): or .

## Values of 100000

In astronomy, 100,000 metres, 100 kilometres, or 100 km (62 miles) is the altitude at which the Fédération Aéronautique Internationale (FAI) defines spaceflight to begin.

In the Irish Language, céad míle fáilte (pronounced: Irish pronunciation: [ceːd̪ˠ ˈmʲiːlʲə ˈfˠaːlʲtʲə]) is a popular greeting meaning "A Hundred Thousand Welcomes".

## Selected 6-digit numbers (100,001–999,999)

### 100,001 to 199,999

#### 150,000 to 159,999

• 156,146 – Keith number[9]

#### 160,000 to 169,999

• 160,000 – 204
• 161,051 – 115
• 161,280 – highly totient number[3]
• 166,320 – highly composite number[6]
• 167,400 – harmonic divisor number[4]

#### 170,000 to 179,999

• 173,600 – harmonic divisor number[4]
• 174,680 – Keith number[9]
• 174,763Wagstaff prime[16]
• 177,147 – 311
• 177,777 – smallest natural number requiring 19 syllables in American English, 21 in British English
• 178,478 – Leyland number[13]

#### 180,000 to 189,999

• 181,440 – highly totient number[3]
• 181,819 – Kaprekar number[15]
• 183,186 – Keith number[9]
• 187,110 – Kaprekar number[15]

### 300,000 to 399,999

• 310,572 – Motzkin number[7]
• 317,811 – Fibonacci number[10]
• 318,682 – Kaprekar number[15]
• 326,981alternating factorial[23]
• 329,967 – Kaprekar number[15]
• 332,640 – highly composite number;[6] harmonic divisor number[4]
• 333,333 – repdigit
• 333,667sexy prime and unique prime[24]
• 333,673 – sexy prime
• 333,679 – sexy prime
• 351,351 – only known odd abundant number that is not the sum of some of its proper, nontrivial (i.e. >1) divisors (sequence A122036 in the OEIS).
• 351,352 – Kaprekar number[15]
• 355,419 – Keith number[9]
• 356,643 – Kaprekar number[15]
• 360,360 – harmonic divisor number;[4] the smallest number divisible by all of the numbers 1 through 15
• 362,880 – 9!, highly totient number[3]
• 370,261 – first prime followed by a prime gap of over 100
• 371,293 – 135, palindromic in base 12 (15AA5112)
• 389,305self-descriptive number in base 7
• 390,313 – Kaprekar number[15]
• 390,625 – 58
• 397,585 – Leyland number[13]

### 400,000 to 499,999

• 409,113 – sum of the first nine factorials
• 422,481 – smallest number whose fourth power is the sum of three smaller fourth powers
• 423,393 – Leyland number[13]
• 426,389 – Markov number[14]
• 426,569cyclic number in base 12
• 437,760 to 440,319any of these numbers will cause the Apple II+ and Apple //e computers to crash to a monitor prompt when entered at the Basic prompt, due to a short-cut in the Applesoft code programming of the overflow test when evaluating 16 bit numbers.[25] Entering 440000 at the prompt has been used to hack games that are protected against entering commands at the prompt after the game is loaded.
• 444,444 – repdigit
• 461,539 – Kaprekar number[15]
• 466,830 – Kaprekar number[15]
• 470,832 – Pell number[17]
• 483,840 – highly totient number[3]
• 498,960 – highly composite number[6]
• 499,393 – Markov number[14]
• 499,500 – Kaprekar number[15]

### 500,000 to 599,999

• 500,500 – Kaprekar number,[15] sum of first 1000 integers
• 509,203Riesel number[26]
• 510,510 – the product of the first seven prime numbers, thus the seventh primorial[27]
• 514,229Fibonacci prime,[28] Markov number[14]
• 524,287 – Mersenne prime[12]
• 524,288 – 219
• 524,649 – Leyland number[13]
• 531,441 – 312
• 533,169 – Leyland number[13]
• 533,170 – Kaprekar number[15]
• 537,824 – 145
• 539,400 – harmonic divisor number[4]
• 548,834 – equal to the sum of the sixth powers of its digits
• 554,400 – highly composite number[6]
• 555,555 – repdigit

### 600,000 to 699,999

• 604,800 – number of seconds in a week
• 646,018 – Markov number[14]
• 665,280 – highly composite number[6]
• 666,666 – repdigit
• 676,157 – Wedderburn–Etherington number[11]
• 678,570 – Bell number[8]
• 694,280 – Keith number[9]
• 695,520 – harmonic divisor number[4]

### 700,000 to 799,999

• 720,720superior highly composite number;[29] colossally abundant number;[30] the smallest number divisible by all the numbers 1 through 16
• 725,760 – highly totient number[3]
• 726,180 – harmonic divisor number[4]
• 742,900 – Catalan number[18]
• 753,480 – harmonic divisor number[4]
• 759,375 – 155
• 765,623emirp, Friedman number 56 × 72 − 6 ÷ 3
• 777,777 – repdigit, smallest natural number requiring 20 syllables in American English, 22 in British English

### 800,000 to 899,999

• 823,543 – 77
• 832,040 – Fibonacci number[10]
• 853,467 – Motzkin number[7]
• 873,612 – 11 + 22 + 33 + 44 + 55 + 66 + 77
• 888,888 – repdigit
• 890,625 – 1-automorphic number[5]

### 900,000 to 999,999

• 909,091unique prime
• 925,765 – Markov number[14]
• 925,993 – Keith number[9]
• 950,976 – harmonic divisor number[4]
• 967,680 – highly totient number[3]
• 999,983 – largest 6-digit prime number
• 999,999 – repdigit. Rational numbers with denominators 7 and 13 have 6-digit repetends when expressed in decimal form, because 999999 is divisible by 7 and by 13.

## References

1. ^ Sloane, N. J. A. (ed.). "Sequence A003617 (Smallest n-digit prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 7 September 2017.
2. ^ "Problem of the Month (August 2000)". Archived from the original on 2012-12-18. Retrieved 2013-01-13.
3. Sloane, N. J. A. (ed.). "Sequence A097942 (Highly totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
4. Sloane, N. J. A. (ed.). "Sequence A001599 (Harmonic or Ore numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
5. ^ a b Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-04-06.
6. Sloane, N. J. A. (ed.). "Sequence A002182 (Highly composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
7. ^ a b c Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
8. ^ a b Sloane, N. J. A. (ed.). "Sequence A000110 (Bell or exponential numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
9. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A000045 (Fibonacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
10. ^ a b c Sloane, N. J. A. (ed.). "Sequence A001190 (Wedderburn-Etherington numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
11. ^ a b Sloane, N. J. A. (ed.). "Sequence A000668 (Mersenne primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
12. Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
13. Sloane, N. J. A. (ed.). "Sequence A002559 (Markoff (or Markov) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
14. Sloane, N. J. A. (ed.). "Sequence A006886 (Kaprekar numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
15. ^ Sloane, N. J. A. (ed.). "Sequence A000979 (Wagstaff primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
16. ^ a b Sloane, N. J. A. (ed.). "Sequence A000129 (Pell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
17. ^ a b Sloane, N. J. A. (ed.). "Sequence A000108 (Catalan numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
18. ^ "Sloane's A093112 : a(n) = (2^n-1)^2 - 2". Archived from the original on 2016-06-23. Retrieved 2016-06-17.
19. ^ "Sloane's A049384 : a(0)=1, a(n+1) = (n+1)^a(n)access-date=2016-06-17". Archived from the original on 2016-05-26.
20. ^ Sloane, N. J. A. (ed.). "Sequence A019279 (Superperfect numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
21. ^ "Sloane's A093069 : a(n) = (2^n + 1)^2 - 2". Archived from the original on 2016-08-05. Retrieved 2016-06-17.
22. ^ Sloane, N. J. A. (ed.). "Sequence A005165 (Alternating factorials)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
23. ^ Sloane, N. J. A. (ed.). "Sequence A040017 (Unique period primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
24. ^ "Archived copy". Archived from the original on 2016-04-15. Retrieved 2016-04-04.CS1 maint: Archived copy as title (link) Disassembled ROM. See comments at \$DA1E.
25. ^ Sloane, N. J. A. (ed.). "Sequence A101036 (Riesel numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
26. ^ Sloane, N. J. A. (ed.). "Sequence A002110 (Primorial numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
27. ^ Sloane, N. J. A. (ed.). "Sequence A005478 (Prime Fibonacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
28. ^ Sloane, N. J. A. (ed.). "Sequence A002201 (Superior highly composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
29. ^ Sloane, N. J. A. (ed.). "Sequence A004490 (Colossally abundant numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.