1223 Neckar

From Wikipedia, the free encyclopedia
Jump to: navigation, search
1223 Neckar
Discovery [1]
Discovered by K. Reinmuth
Discovery site Heidelberg Obs.
Discovery date 6 October 1931
Designations
MPC designation (1223) Neckar
Named after
Neckar (river)[2]
1931 TG · 1930 MN
1931 TA1 · 1953 FC
A907 VD · A909 BD
A917 XC · A917 YA
main-belt · Koronis[3][4][5]
Orbital characteristics[1]
Epoch 16 February 2017 (JD 2457800.5)
Uncertainty parameter 0
Observation arc 108.62 yr (39,674 days)
Aphelion 3.0394 AU
Perihelion 2.7033 AU
2.8714 AU
Eccentricity 0.0585
4.87 yr (1,777 days)
154.17°
0° 12m 9.36s / day
Inclination 2.5453°
40.819°
15.271°
Physical characteristics
Dimensions 22.783±0.213 km[6]
23.06±0.56 km[7]
24.68±0.55 km[8]
25.736±0.261 km[9]
26.07±0.86 km[10]
27.96 km (derived)[3]
7.763 h[11]
7.80±0.06 h[12]
7.81 h[4]
7.82124 h[5]
7.82401±0.00005 h[13]
7.8273±0.0036 h[14]
8.6 h (wrong)[a]
8.78 h (wrong)[15]
0.123[16]
0.1461±0.0271[9]
0.152±0.025[10]
0.170±0.012[8]
0.201±0.011[7]
B–V = 0.840[1]
U–B = 0.405[1]
Tholen = S[1] · S[3][17]
10.16±0.10 (R)[12] · 10.304±0.002 (R)[14] · 10.51±0.28[17] · 10.58[1][7][10][8] · 10.66[3][15][9]

1223 Neckar, provisional designation 1931 TG, is a stony Koronian asteroid from the outer region of the asteroid belt, approximately 25 kilometers in diameter. It was discovered on 6 October 1931, by German astronomer Karl Reinmuth at Heidelberg Observatory in southwest Germany,[18] and named for the local river Neckar. Five nights later, it was independently discovered by Fernand Rigaux at Uccle in Belgium.[2]

Description[edit]

Neckar is a S-type asteroid and member of the Koronis family, which is thought to have been formed at least two billion years ago in a catastrophic collision between two larger bodies. It orbits the Sun at a distance of 2.7–3.0 AU once every 4 years and 10 months (1,777 days). Its orbit has an eccentricity of 0.06 and an inclination of 3° with respect to the ecliptic.[1] It was first identified as A907 VD at the discovering observatory in Heidelberg in 1907, extending the body's observation arc by 24 years prior to its official discovery observation.[18]

Best rated rotational light-curve of Neckar gave a rotation period of 7.763 and 7.81 hours with a brightness variation of 0.18 and 0.45 magnitude, respectively (U=3/3).[4][11] Photometric observations taken by Richard Binzel and Ed Tedesco in the 1970s and 1980s, however, gave a longer period and are now considered incorrect (U=0/0).[3][15][a] Lightcurves with a period of 7.80 and 7.8273 hours (Δ0.21/0.28 mag) were also obtained at the Palomar Transient Factory in 2010 and 2014, respectively (U=2/2).[12][14] Neckar's spin axis has been determined several times. Best rated result from a group lead by Polish astronomers gave a pole of (70.0°, 45.0°) in ecliptic coordinates.[11]

According to the surveys carried out by the Japanese Akari satellite and NASA's Wide-field Infrared Survey Explorer with its subsequent NEOWISE mission, Neckar measures between 22.783 and 26.07 kilometers in diameter, and its surface has an albedo between 0.146 and 0.201.[6][7][8][9][10] The Collaborative Asteroid Lightcurve Link adopts an albedo of 0.123 obtained by Morrison in the 1970s,[16] and derives a diameter of 27.96 kilometers using an absolute magnitude of 10.66.[3]

This minor planet was named after the river Neckar, running through the southwestern parts of Germany and in particular through the city of Heidelberg, location of the discovering observatory. The river origins in the Black Forrest and flows into the Rhine river. Naming citation was first mentioned in The Names of the Minor Planets by Paul Herget in 1955 (H 113).[2]

References[edit]

  1. ^ a b Tedesco (1979) web: rotation period 8.6 hours with a brightness amplitude of 0.45 mag. Summary figures at Collaborative Asteroid Lightcurve Link (CALL) for (1223) Neckar
  1. ^ a b c d e f g "JPL Small-Body Database Browser: 1223 Neckar (1931 TG)" (2016-06-16 last obs.). Jet Propulsion Laboratory. Retrieved 1 February 2017. 
  2. ^ a b c Schmadel, Lutz D. (2007). Dictionary of Minor Planet Names – (1223) Neckar. Springer Berlin Heidelberg. p. 102. ISBN 978-3-540-00238-3. Retrieved 1 February 2017. 
  3. ^ a b c d e f "LCDB Data for (1223) Neckar". Asteroid Lightcurve Database (LCDB). Retrieved 1 February 2017. 
  4. ^ a b c Slivan, Stephen M.; Binzel, Richard P. (December 1996). "Forty-eight New Rotation Lightcurves of 12 Koronis Family Asteroids". Icarus. 124 (2): 452–470. Bibcode:1996Icar..124..452S. doi:10.1006/icar.1996.0222. Retrieved 1 February 2017. 
  5. ^ a b Slivan, Stephen M.; Binzel, Richard P.; Crespo da Silva, Lucy D.; Kaasalainen, Mikko; Lyndaker, Mariah M.; Krco, Marko (April 2003). "Spin vectors in the Koronis family: comprehensive results from two independent analyses of 213 rotation lightcurves". Icarus. 162 (2): 285–307. Bibcode:2003Icar..162..285S. doi:10.1016/S0019-1035(03)00029-0. Retrieved 1 February 2017. 
  6. ^ a b Masiero, Joseph R.; Grav, T.; Mainzer, A. K.; Nugent, C. R.; Bauer, J. M.; Stevenson, R.; et al. (August 2014). "Main-belt Asteroids with WISE/NEOWISE: Near-infrared Albedos". The Astrophysical Journal. 791 (2): 11. Bibcode:2014ApJ...791..121M. arXiv:1406.6645Freely accessible. doi:10.1088/0004-637X/791/2/121. Retrieved 1 February 2017. 
  7. ^ a b c d Usui, Fumihiko; Kuroda, Daisuke; Müller, Thomas G.; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi; et al. (October 2011). "Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey" (PDF). Publications of the Astronomical Society of Japan. 63 (5): 1117–1138. Bibcode:2011PASJ...63.1117U. doi:10.1093/pasj/63.5.1117. Retrieved 1 February 2017. 
  8. ^ a b c d Masiero, Joseph R.; Mainzer, A. K.; Grav, T.; Bauer, J. M.; Cutri, R. M.; Nugent, C.; et al. (November 2012). "Preliminary Analysis of WISE/NEOWISE 3-Band Cryogenic and Post-cryogenic Observations of Main Belt Asteroids". The Astrophysical Journal Letters. 759 (1): 5. Bibcode:2012ApJ...759L...8M. arXiv:1209.5794Freely accessible. doi:10.1088/2041-8205/759/1/L8. Retrieved 1 February 2017. 
  9. ^ a b c d Mainzer, A.; Grav, T.; Masiero, J.; Hand, E.; Bauer, J.; Tholen, D.; et al. (November 2011). "NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results" (PDF). The Astrophysical Journal. 741 (2): 25. Bibcode:2011ApJ...741...90M. arXiv:1109.6407Freely accessible. doi:10.1088/0004-637X/741/2/90. Retrieved 1 February 2017. 
  10. ^ a b c d Hasegawa, Sunao; Müller, Thomas G.; Kuroda, Daisuke; Takita, Satoshi; Usui, Fumihiko (April 2013). "The Asteroid Catalog Using AKARI IRC Slow-Scan Observations". Publications of the Astronomical Society of Japan. 65 (2): 11. Bibcode:2013PASJ...65...34H. arXiv:1210.7557Freely accessible. doi:10.1093/pasj/65.2.34. Retrieved 1 February 2017. 
  11. ^ a b c Michalowski, T.; Pych, W.; Berthier, J.; Kryszczynska, A.; Kwiatkowski, T.; Boussuge, J.; et al. (November 2000). "CCD photometry, spin and shape models of five asteroids: 225, 360, 416, 516, and 1223". Astronomy and Astrophysics Supplement: 471–479. Bibcode:2000A&AS..146..471M. doi:10.1051/aas:2000282. Retrieved 1 February 2017. 
  12. ^ a b c Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen; Prince, Thomas A.; Kulkarni, Shrinivas R.; Levitan, David; et al. (December 2016). "Large Super-fast Rotator Hunting Using the Intermediate Palomar Transient Factory". The Astrophysical Journal Supplement Series. 227 (2): 13. Bibcode:2016ApJS..227...20C. arXiv:1608.07910Freely accessible. doi:10.3847/0067-0049/227/2/20. Retrieved 1 February 2017. 
  13. ^ Hanus, J.; Durech, J.; Broz, M.; Warner, B. D.; Pilcher, F.; Stephens, R.; et al. (June 2011). "A study of asteroid pole-latitude distribution based on an extended set of shape models derived by the lightcurve inversion method". Astronomy & Astrophysics. 530: 16. Bibcode:2011A&A...530A.134H. arXiv:1104.4114Freely accessible. doi:10.1051/0004-6361/201116738. Retrieved 1 February 2017. 
  14. ^ a b c Waszczak, Adam; Chang, Chan-Kao; Ofek, Eran O.; Laher, Russ; Masci, Frank; Levitan, David; et al. (September 2015). "Asteroid Light Curves from the Palomar Transient Factory Survey: Rotation Periods and Phase Functions from Sparse Photometry". The Astronomical Journal. 150 (3): 35. Bibcode:2015AJ....150...75W. arXiv:1504.04041Freely accessible. doi:10.1088/0004-6256/150/3/75. Retrieved 1 February 2017. 
  15. ^ a b c Binzel, R. P. (October 1987). "A photoelectric survey of 130 asteroids". Icarus: 135–208. Bibcode:1987Icar...72..135B. ISSN 0019-1035. doi:10.1016/0019-1035(87)90125-4. Retrieved 1 February 2017. 
  16. ^ a b Morrison, D.; Zellner, B. (December 1978). "Polarimetry and radiometry of the asteroids". In: Asteroids. (A80-24551 08-91) Tucson: 1090–1097. Bibcode:1979aste.book.1090M. Retrieved 22 November 2015. 
  17. ^ a b Veres, Peter; Jedicke, Robert; Fitzsimmons, Alan; Denneau, Larry; Granvik, Mikael; Bolin, Bryce; et al. (November 2015). "Absolute magnitudes and slope parameters for 250,000 asteroids observed by Pan-STARRS PS1 - Preliminary results". Icarus. 261: 34–47. Bibcode:2015Icar..261...34V. arXiv:1506.00762Freely accessible. doi:10.1016/j.icarus.2015.08.007. Retrieved 1 February 2017. 
  18. ^ a b "1223 Neckar (1931 TG)". Minor Planet Center. Retrieved 1 February 2017. 

External links[edit]