2-Methylbutanoic acid

From Wikipedia, the free encyclopedia
2-Methylbutanoic acid
(R)-2-Methyl Butyric Acid-Structural Formula V.1.svg
(S)-2-Methyl Butyric Acid-Structural Formula V.1.svg
Preferred IUPAC name
2-Methylbutanoic acid
Other names
2-Methylbutyric acid
Methylethylacetic acid
3D model (JSmol)
ECHA InfoCard 100.003.769 Edit this at Wikidata
EC Number
  • R/S: 204-145-2
  • R/S: InChI=1S/C5H10O2/c1-3-4(2)5(6)7/h4H,3H2,1-2H3,(H,6,7)
  • R/S: CCC(C)C(=O)O
Appearance Clear colorless liquid
Density 0.94 g/cm3 (20 °C)
Melting point −90 °C (−130 °F; 183 K)
Boiling point 176 °C (349 °F; 449 K)
log P 1.18
GHS labelling:
GHS05: CorrosiveGHS07: Exclamation mark
H302, H312, H314
P260, P264, P270, P280, P301+P312, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P321, P322, P330, P363, P405, P501
Flash point 83 °C (181 °F; 356 K)[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

2-Methylbutanoic acid, also known as 2-methylbutyric acid is a branched-chain alkyl carboxylic acid with the chemical formula CH3CH2CH(CH3)CO2H, classified as a short-chain fatty acid. It exists in two enantiomeric forms, (R)- and (S)-2-methylbutanoic acid. (R)-2-methylbutanoic acid occurs naturally in cocoa beans and (S)-2-methylbutanoic occurs in many fruits such as apples and apricots,[2][3] as well as in the scent of the orchid Luisia curtisii.[4]


2-Methylbutanoic acid is a minor constituent of Angelica archangelica and the perennial flowering plant valerian (Valeriana officinalis), where it co-occurs with valeric acid and isovaleric acid.[5] The dried root of this plant has been used medicinally since antiquity.[6] The chemical identity of all three compounds was first investigated in the 19th century by oxidation of the components of fusel alcohol, which includes the five-carbon amyl alcohols. Among the products isolated was a compound which gave a (+) rotation in polarised light, indicating it to be the (2S) isomer.[7]


Racemic 2-methylbutanoic acid can readily be prepared by a Grignard reaction using 2-chlorobutane and carbon dioxide.[8] It was the target of the first enantioselective synthesis in 1904 when the German chemist W. Marckwald heated ethyl(methyl)malonic acid with the chiral base brucine and obtained an optically active product mixture.[9] Either enantiomer of 2-methylbutanoic acid can now be obtained by asymmetric hydrogenation of tiglic acid using a ruthenium-BINAP catalyst.[10]


The compound and its enantiomers react as typical carboxylic acids: they can form amide, ester, anhydride, and chloride derivatives.[11] The acid chloride is commonly used as the intermediate to obtain the others.


Racemic 2-methylbutanoic acid is a slightly volatile, colorless liquid with a pungent cheesy odor.[12] The smell differs significantly between the two enantiomeric forms. (S)-2-Methylbutyric acid has a pleasantly sweet, fruity odor[13] while (R)-2-methylbutanoic acid has a pervasive, cheesy, sweaty odor.[14] The main use of the materials, and their esters, is therefore as flavours and food additives.[2][15] The compounds' safety in this application was reviewed by an FAO and WHO panel, who concluded that there were no concerns at the likely levels of intake.[16]


Since 2-methylbutanoic acid and its esters are natural components of many foods, they are present in mammals including humans.[17][18]

See also[edit]


  1. ^ a b Record in the GESTIS Substance Database of the Institute for Occupational Safety and Health
  2. ^ a b Rettinger, Klaus; Burschka, Christian; Scheeben, Peter; Fuchs, Heike; Mosandl, Armin (1991). "Chiral 2-alkylbranched acids, esters and alcohols. Preparation and stereospecific flavour evaluation" (PDF). Tetrahedron: Asymmetry. 2 (10): 965–968. doi:10.1016/S0957-4166(00)86137-6.
  3. ^ Karl A. D. Swift (1999). Current Topics in Flavours and Fragrances: Towards a New Millennium of Discovery. Springer. p. 52. ISBN 0-7514-0490-X.
  4. ^ Genera Orchidacearum Vol 6, Ed. Alec M. Pridgeon et al., p. 207 (LUISIA).
  5. ^ Chisholm, Hugh, ed. (1911). "Valeric Acid" . Encyclopædia Britannica. Vol. 27 (11th ed.). Cambridge University Press. p. 859.
  6. ^ Eadie, Mervyn J. (November 2004). "Could Valerian Have Been the First Anticonvulsant?". Epilepsia. 45 (11): 1338–1343. doi:10.1111/j.0013-9580.2004.27904.x. PMID 15509234.
  7. ^ Pedler, Alexander (1868). "On the isomeric forms of valeric acid". Journal of the Chemical Society. 21: 74–76. doi:10.1039/JS8682100074.
  8. ^ "dl-Methylethylacetic acid". Organic Syntheses. 5: 75. 1925. doi:10.15227/orgsyn.005.0075.
  9. ^ Marckwald, W (1904). "Ueber asymmetrische Synthese". Berichte der Deutschen Chemischen Gesellschaft. 37: 349–354. doi:10.1002/cber.19040370165.
  10. ^ Matteoli, Ugo; Beghetto, Valentina; Scrivanti, Alberto (1999). "Asymmetric hydrogenation by an in situ prepared (S)-BINAP–Ru(II) catalytic system". Journal of Molecular Catalysis A: Chemical. 140 (2): 131–137. doi:10.1016/S1381-1169(98)00235-0.
  11. ^ Jenkins, P. R. (1985). "Carboxylic acids and derivatives". General and Synthetic Methods. Vol. 7. pp. 96–160. doi:10.1039/9781847556196-00096. ISBN 978-0-85186-884-4.
  12. ^ "2-Methylbutyric acid". The Good Scents Company. Retrieved 2020-09-30.
  13. ^ "(S)-2-methylbutyric acid". The Good Scents Company. Retrieved 2020-09-30.
  14. ^ "(R)-2-methylbutyric acid". The Good Scents Company. Retrieved 2020-09-30.
  15. ^ Mariaca, Raul G.; Imhof, Miroslava I.; Bosset, J. O. (2001). "Occurrence of volatile chiral compounds in dairy products, especially cheese - A review". European Food Research and Technology. 212 (3): 253–261. doi:10.1007/s002170000250. S2CID 96864200.
  16. ^ FAO/WHO Expert Committee on food additives (1998). "Safety evaluation of certain food additives and contaminants". Retrieved 2020-09-30.
  17. ^ "Metabocard for (S)-2-Methylbutanoic acid". Human Metabolome Database. 2019-07-23. Retrieved 2020-09-30.
  18. ^ "Metabocard for Methyl (S)-2-Methylbutanoate". Human Metabolome Database. 2019-07-23. Retrieved 2020-09-30.

External links[edit]

Media related to 2-Methylbutanoic acid at Wikimedia Commons