2019 in paleobotany

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
List of years in paleobotany
In paleontology
2016
2017
2018
2019
2020
2021
2022

This article records new taxa of fossil plants that are scheduled to be described during the year 2019, as well as other significant discoveries and events related to paleobotany that are scheduled to occur in the year 2019.

Research[edit]

  • Cretaceous alga Falsolikanella campanensis, originally assigned to the tribe Diploporeae within the green alga order Dasycladales, is transferred to the genus Actinoporella within the tribe Acetabularieae, family Polyphysaceae by Barattolo et al. (2019).[1]
  • A study on the composition and distribution of dispersed spore assemblages from Middle Devonian deposits of northern Spain, and on their implications for infering the nature of the Kačák Event, will be published by Askew & Wellman (2019).[2]
  • A study on the stable carbon isotopic composition of 190 fossil specimens belonging to 12 genera of Devonian and Early Carboniferous land plants is published by Wan et al. (2019).[3]
  • A study on the early evolution of vascular plants is published by Cascales‐Miñana et al. (2019).[4]
  • A study on diversity and functions of lycopsid reproductive structures through time, based on data from extant and fossil taxa, is published by Bonacorsi & Leslie (2019).[5]
  • Redescription of the morphology of sterile and fertile structures of the Devonian lycopsid Kossoviella timanica is published by Orlova et al. (2019).[6]
  • A study on the phylogenetic placement of the extinct fern genus Coniopteris is published by Li et al. (2019).[7]
  • A study on the molecular structural characteristics of organic remains of a fern belonging to the family Osmundaceae from the Early Jurassic Korsaröd site in southern Sweden is published by Qu et al. (2019).[8]
  • A study on the morphological characters of 42 fossil species of Dicksoniaceae from China, and on their implications for the taxonomy of the fossil members of this group, is published by Xin et al. (2019).[9]
  • Fossil occurrences of members of the genus Christella are reported from the late Paleocene of Liuqu, southern Tibet and middle Miocene of the Jinggu Basin in western Yunnan (China) by Xu et al. (2019), who transfer the species "Cyclosorus" nervosus Tao (1988) to the genus Christella.[10]
  • A study on the fossils of Glossopteris from the Permian succession of eastern India, aiming to identify the molecular signatures of solvent-extractable and non-extractable organic matter, will be published by Tewari et al. (2019).[11]
  • A study on the diversity trends of Glossopteris flora from the Barakar, Raniganj, and Panchet formations of Tatapani–Ramkola Coalfield (India) will be published by Saxena et al. (2019).[12]
  • A study on the pinnule and stomatal morphology of extant and fossil members of the genera Bowenia and Eobowenia, and on its implications for the knowledge of adaptations of fossil plants to different environments, is published by Hill, Hill & Watling (2019).[13]
  • Seed of the ginkgoalean Yimaia capituliformis with damage interpreted as likely oviposition lesions inflicted by a kalligrammatid lacewing is described from the Middle Jurassic Jiulongshan Formation (China) by Meng et al. (2019).[14]
  • A study on the phytogeographic history of ten conifer genera that are endemic to East Asia, based on fossil data from humid temperate forests in the Japanese Islands and Korean Peninsula, is published by Yabe et al. (2019).[15]
  • A study on the evolution of male and female cone sizes in members of the family Araucariaceae, as indicated by data from extant and fossil members of this family, is published by Gleiser et al. (2019).[16]
  • Five fossil foliage specimens of Calocedrus lantenoisi, representing one of the earliest records of the genus Calocedrus worldwide, are described from the Oligocene Shangcun Formation of the Maoming Basin (Guangdong Province, South China) by Wu et al. (2019).[17]
  • Leaves including cuticles and ovuliferous cones of members of the genus Metasequoia are described from the middle Miocene of Zhenyuan, Yunnan (Southwest China) by Wang et al. (2019), comprising the southernmost fossil record of this genus worldwide.[18]
  • A review of the fossil record of woods which might have affinities with Taxaceae, and a study on the palaeobiogeographical history of this family, is published by Philippe et al. (2019).[19]
  • A review of epidermal features of bennettites, comparing them with analogous features in living taxa and aiming to identify homologous character states, will be published by Rudall & Bateman (2019).[20]
  • A review of the paleobotanical evidence of the age and early history of the flowering plants is published by Coiro, Doyle & Hilton (2019).[21]
  • Presence of secretory tissues is reported in extinct flowers from the Cretaceous amber from Myanmar and Cenozoic Dominican amber (including specimens preserved while in the process of emitting compounds) by Poinar & Poinar (2019).[22]
  • Fossil fruits of members of the genera Fragaria and Rubus are reported from the Pliocene otrcrops in the Heqing Basin (China) by Huang et al. (2019).[23]
  • Description of alder leaf and infructescence fossils from the Upper Eocene Lawula Formation (Qinghai–Tibetan Plateau) is published by Xu, Su & Zhou (2019).[24]
  • A study on the morphology, paleoecology, historical biogeography and phylogenetic relationships of fossil pollen of members of Malvaceae belonging to the species Rhoipites guianensis and Malvacipolloides maristellae, and on its implications for inferring the impact of Cenozoic geological processes (including the uplift of the Andes) on members of Malvaceae living in northern South America, is published by Hoorn et al. (2019).[25]
  • A study aiming to determine the location of refugia of two North American species of hickories during the Last Glacial Maximum on the basis of genomic data is published by Bemmels, Knowles & Dick (2019).[26]
  • Seeds of Eurya stigmosa are reported from the Early Pleistocene lacustrine and fluvial sediments of Porto da Cruz, Madeira by Góis-Marques et al. (2019).[27]
  • A study on the putative cycad "Zamia" australis from the Miocene Ñirihuau Formation (Argentina) is published by Passalia, Caviglia & Vera (2019), who reinterpret the fossil specimens as flowering plant leaves, and transfer this species to the genus Lithraea.[28]
  • A study on the stratigraphic ranges and diversities of plant taxa from the upper Permian (Lopingian) to the Middle Triassic is published by Nowak, Schneebeli-Hermann & Kustatscher (2019), who interpret their findings as indicating that the extinction of land plants during the Permian–Triassic extinction event was much less severe than previously thought.[29]
  • A study on the timing of the collapse of the Permian Glossopteris flora from the Sydney Basin (Australia) is published by Fielding et al. (2019).[30]
  • Plant disseminules are documented from four Middle Jurassic to Lower Cretaceous lacustrine Lagerstätten in China and Australia by McLoughlin & Pott (2019).[31]
  • A study on phototropism in extant trees from Beijing and Jilin Provinces and fossil tree trunks from the Jurassic Tiaojishan and Tuchengzi formations in Liaoning and Beijing regions (China), and on its implications for inferring the history of the rotation of the North China Block, is published by Jiang et al. (2019).[32]
  • A study on the plant specimens (ferns, gymnosperms and angiosperms) from the Lower Cretaceous Araripe Basin (Brazil) preserving evidence of plant–insect interactions and potentially of paleoecological relationships between plants and insects will be published by Edilson Bezerra dos Santos Filho et al. (2019).[33]
  • Leaves of members of the family Nymphaeaceae preserving evidence of insect herbivory are reported from the Albian Utrillas Formation (Spain) by Estévez-Gallardo et al. (2019).[34]
  • A study on the evolution of plant assemblages in the area of Primorye (Russia) throughout the Paleogene is published by Bondarenko, Blokhina & Utescher (2019).[35]
  • Su et al. (2019) use radiometrically dated plant fossil assemblages to quantify when southeastern Tibet achieved its present elevation, and what kind of floras existed there at that time.[36]
  • Description of a plant megafossil assemblage from the Kailas Formation in western part of the southern Lhasa terrane, and a study on its implications for inferring the elevation history of the southern Tibetan Plateau, is published by Ai et al. (2019).[37]
  • A study on the dynamics and evolution of the flora of Turgai ecological type in Western Siberia during the early Oligocene to earliest Miocene is published by Popova et al. (2019).[38]
  • A study on changes of C4 vegetation composition in southwestern Montana (United States) from the late Miocene through present is published by Hyland et al. (2019).[39]
  • A study on vegetation changes in west African tropical montane forest over the past 90,000 years, as indicated by pollen data from the Lake Bambili site (Cameroon), is published by Lézine et al. (2019).[40]

Flowering plants[edit]

Newly named Aquifoliales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Ilex angustifolioides[41]

Nom. nov

Valid

Doweld

Miocene

 Germany

A holly; a replacement name for Ilex denticulata von Heer (1857).

Ilex aschutassica[41]

Nom. nov

Valid

Doweld

Oligocene

 Kazakhstan

A holly; a replacement name for Ilex integrifolia Baikovskaja (1956).

Ilex boulayi[41]

Nom. nov

Valid

Doweld

Miocene

 France

A holly; a replacement name for Ilex undulata Boulay (1887).

Ilex friedrichii[41]

Nom. nov

Valid

Doweld

Oligocene

 Germany

A holly; a replacement name for Ilex longifolia Friedrich (1884).

Ilex latifolioides[41]

Nom. nov

Valid

Doweld

Oligocene

 France

A holly; a replacement name for Ilex acuminata Saporta (1865).

Ilex mormonica[41]

Nom. nov

Valid

Doweld

Oligocene

 United States
( Montana)

A holly; a replacement name for Ilex acuminata Becker (1960).

Ilex opacina[41]

Nom. nov

Valid

Doweld

Oligocene

 France

A holly; a replacement name for Ilex microdonta Saporta (1865).

Ilex polarica[41]

Nom. nov

Valid

Doweld

Paleocene

 Greenland

A holly; a replacement name for Ilex macrophylla von Heer (1869).

Ilex subrotunda[41]

Sp. nov

Valid

Doweld

Miocene

 Japan

A holly; a replacement name for the previously invalidly published Ilex ohashii Huzioka (1963), lacking holotype designation when published.

Newly named Arecales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Sabalites tibetensis[42]

Sp. nov

Valid

Su & Zhou in Su et al.

Oligocene (Chattian)

Lunpola Basin

 China

A member of the family Arecaceae belonging to the subfamily Coryphoideae.

Sclerosperma protoprofizianum[43]

Sp. nov

Valid

Grímsson & Zetter in Grímsson et al.

Late Oligocene

 Ethiopia

A species of Sclerosperma.

Sclerosperma protomannii[43]

Sp. nov

Valid

Grímsson & Zetter in Grímsson et al.

Late Oligocene

 Ethiopia

A species of Sclerosperma.

Newly named Alismatales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Orontiophyllum ferreri[44]

Sp. nov

In press

Sender et al.

Early Cretaceous (Albian)

 Spain

A member or a relative of the family Araceae.

Turolospadix[44]

Gen. et sp. nov

In press

Sender et al.

Early Cretaceous (Albian)

 Spain

A member or a relative of the family Araceae. Genus includes new species T. bogneri.

Newly described Asterales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Cichoreacidites? igapoensis[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a member of the genus Pacourina or Vernonia.

Newly named Brassicales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Akania gibsonorum[46]

Sp. nov

Valid

Conran et al.

Early Miocene

 New Zealand

A member of the family Akaniaceae.

Newly named Chloranthales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Hedyflora[47]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Aptian–early Albian)

Figueira da Foz Formation

 Portugal

A member of the family Chloranthaceae. Genus includes new species H. crystallifera.

Newly named Cornales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Eydeia jerseyensis[48]

Sp. nov

Valid

Atkinson, Martínez & Crepet

Late Cretaceous (Turonian)

 United States
( New Jersey)

Newly named Crossosomatales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Staphylea ochoterenae[49]

Sp. nov

Valid

Hernández-Damián, Cevallos-Ferriz & Huerta-Vergara

Miocene

 Mexico

A species of Staphylea.

Newly named Dioscoreales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Dioscorea eocenicus[50]

Sp. nov

In press

Mehrotra & Shukla

Early Eocene

 India

A species of Dioscorea.

Newly named Ericales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Psilastephanocolporites brevissimus[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a flowering plant, possibly a member of the genus Myrsine.

Newly named Fabales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Arcoa lindgreni[51]

Sp. nov

Valid

Herendeen & Herrera

Eocene

Green River Formation

 United States
( Wyoming)

A species of Arcoa.

Cercioxylon zeynepae[52]

Sp. nov

In press

Akkemik

Pliocene

Örencik Formation

 Turkey

A relative of redbuds described on the basis of fossil wood.

Newly named Fagales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Quercus shangcunensis[53]

Sp. nov

Valid

Liu et al.

Early Oligocene

Shangcun Formation

 China

An oak

Newly named Gentianales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Calycophyllum plengei[54]

Sp. nov

In press

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Calycophyllum.

Psilatriporites aspidatus[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a member of the genus Faramea.

Newly named Icacinales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Iodes acuta[55]

Sp. nov

Valid

Del Rio, Stull & De Franceschi

Early Eocene

 France

A member of the family Icacinaceae.

Iodes parva[56]

Sp. nov

Valid

Del Rio, Thomas & De Franceschi

Late Paleocene

 France

A member of the family Icacinaceae.

Iodes reidii[56]

Sp. nov

Valid

Del Rio, Thomas & De Franceschi

Late Paleocene

 France

A member of the family Icacinaceae.

Iodes rigida[55]

Sp. nov

Valid

Del Rio, Stull & De Franceschi

Early Eocene

 France

A member of the family Icacinaceae.

Iodes rivecourtensis[56]

Sp. nov

Valid

Del Rio, Thomas & De Franceschi

Late Paleocene

 France

A member of the family Icacinaceae.

Iodes sinuosa[56]

Sp. nov

Valid

Del Rio, Thomas & De Franceschi

Late Paleocene

 France

A member of the family Icacinaceae.

Iodes tubulifera[56]

Sp. nov

Valid

Del Rio, Thomas & De Franceschi

Late Paleocene

 France

A member of the family Icacinaceae.

Newly named Laurales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Laurophyllum alseodaphnoides[57]

Sp. nov

Valid

Wang & Sun in Wang et al.

Miocene (Langhian)

Fotan Group

 China

A member of Lauraceae described on the basis of fossil leaves.

Laurophyllum fotanensis[57]

Sp. nov

Valid

Wang & Sun in Wang et al.

Miocene (Langhian)

Fotan Group

 China

A member of Lauraceae described on the basis of fossil leaves.

Laurophyllum lindaiensis[57]

Sp. nov

Valid

Wang & Sun in Wang et al.

Miocene (Langhian)

Fotan Group

 China

A member of Lauraceae described on the basis of fossil leaves.

Laurophyllum triangulatum[57]

Sp. nov

Valid

Wang & Sun in Wang et al.

Miocene (Langhian)

Fotan Group

 China

A member of Lauraceae described on the basis of fossil leaves.

Laurophyllum zhangpuensis[57]

Sp. nov

Valid

Wang & Sun in Wang et al.

Miocene (Langhian)

Fotan Group

 China

A member of Lauraceae described on the basis of fossil leaves.

Newly named Magnoliales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Anonaspermum orientalis[58]

Sp. nov

In press

Li et al.

Late Oligocene

Yongning Formation

 China

A member of the family Annonaceae.

Magnolia nanningensis[59]

Sp. nov

In press

Huang et al.

Late Oligocene

Nanning Basin

 China

A species of Magnolia.

Riaselis[60]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Aptian-early Albian or older)

 Portugal

Genus includes new species R. rugosa.

Serialis[60]

Gen. et 9 sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (late Barremian-early Albian)

Almargem Formation
Figueira da Foz Formation

 Portugal

Genus includes new species S. antiqua, S. parva, S. elongata, S. tenuitesta, S. communis, S. crassitesta, S. grossa, S. undata and S. reticulata.

Newly described Malpighiales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Calophyllum zhangpuensis[61]

Sp. nov

In press

Wang et al.

Miocene

Fotan Group

 China

A species of Calophyllum.

Elioxylon[62]

Gen. et sp. nov

Valid

Srivastava, Miller & Baas

Late Cretaceous (Maastrichtian)–Paleocene (Danian)

Deccan Intertrappean Beds

 India

A wood morphospecies with features of Achariaceae and Salicaceae. Type species includes new species E. seoniensis.

Garcinia zhangpuensis[63]

Sp. nov

Valid

Wang et al.

Middle Miocene

Fotan Group

 China

A species of Garcinia.

Mascogophyllum[64]

Gen. et sp. nov

Valid

Centeno-González, Porras-Múzquiz & Estrada-Ruiz

Late Cretaceous (late Campanian)

Olmos Formation

 Mexico

A possible member of Violaceae. Genus includes new species M. elizondoa.

Newly named Malvales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Ceiba archeopentandra[54]

Sp. nov

In press

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Ceiba.

Ceiba huancabambiana[54]

Sp. nov

In press

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Ceiba.

Grewia americana[54]

Sp. nov

In press

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Grewia.

Guazuma santacruzensis[54]

Sp. nov

In press

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A member of the family Malvaceae.

Luehea stratificata[54]

Sp. nov

In press

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Luehea.

Muntingia solapora[54]

Sp. nov

In press

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Muntingia.

Ochroma pozoensis[54]

Sp. nov

In press

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Ochroma.

Sterculia matrum[54]

Sp. nov

In press

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Sterculia.

Vasivaea weigendii[54]

Sp. nov

In press

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

Newly named Myrtales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Miconioidea[54]

Gen. et sp. nov

In press

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A member of the family Melastomataceae. Genus includes new species M. eocenica.

Newly described Poales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Bambusiculmus makumensis[65]

Sp. nov

Valid

Srivastava et al.

Late Oligocene

 India

A bamboo.

Bambusiculmus tirapensis[65]

Sp. nov

Valid

Srivastava et al.

Late Oligocene

 India

A bamboo.

Bambusium arunachalense[65]

Sp. nov

Valid

Srivastava et al.

Late Miocene to Pliocene

 India

A bamboo.

Bambusium deomarense[65]

Sp. nov

Valid

Srivastava et al.

Late Miocene to Pliocene

 India

A bamboo.

Scirpus weichangensis[66]

Sp. nov

Valid

Liang in Lu et al.

Early Miocene

Hannuoba Formation

 China

A species of Scirpus.

Newly named Proteales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Platanus heilongjiangensis[67]

Sp. nov

In press

Sun et al.

Late Cretaceous (China)

Houshiigou Formation

 China

A species of Platanus.

Newly named Rosales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Cedrelospermum tibeticum[68]

Sp. nov

Valid

Jia, Su & Zhou in Jia et al.

Late Oligocene

Dingqing Formation

 China

A member of Ulmaceae.

Frangulops[41]

Gen. et comb. nov

Valid

Doweld

Eocene

 United States
( Colorado)

A member of Rhamnaceae; a new genus for "Ilex" pseudostenophylla Lesquereux (1883).

Rubus eubaticus[69]

Nom. nov

Valid

Doweld

Miocene

 Bulgaria

A species of Rubus; a replacement name for Rubus mucronatus Palamarev (1987).

Rubus primoricus[69]

Nom. nov

Valid

Doweld

Miocene

 Russia
( Primorsky Krai)

A species of Rubus; a replacement name for Rubus ellipticus Pavlyutkin (2005).

Newly named Sapindales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Ailanthus maximus[70]

Sp. nov

Valid

Liu, Su & Zhou in Liu et al.

Latest Paleocene to the Late Oligocene

Lunpola Basin
Nima Basin

 China

A species of Ailanthus.

Dodonaea piedra-chamana[54]

Sp. nov

In press

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Dodonaea.

Koelreuteria lunpolaensis[71]

Sp. nov

Valid

Jiang et al.

Late Oligocene

Lunpola Basin

 China

A species of Koelreuteria.

Rhus asymmetrica[72]

Sp. nov

In press

Tosal, Sanjuan & Martín-Closas

Early Oligocene

 Spain

A sumac.

Zanthoxylum reynelii[54]

Sp. nov

In press

Woodcock, Meyer & Prado

Eocene

Piedra Chamana Fossil Forest

 Peru

A species of Zanthoxylum.

Newly named Saxifragales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Liquidambar bella[73]

Sp. nov

Valid

Maslova et al.

Eocene

Huangniuling Formation

 China

A species of Liquidambar.

Other angiosperms[edit]

Name Novelty Status Authors Type locality Type locality Location Notes Images

Battenipollis sabrinae[74]

Sp. nov

In press

Smith et al.

Early Paleogene

Antarctica

An angiosperm pollen species.

Celastrilex[41]

Gen. et comb. nov

Valid

Doweld

Paleocene

 United States
( Colorado)

A flowering plant of uncertain phylogenetic placement, described on the basis of fossil leaves; a new genus for "Celastrinites" artocarpidioides Lesquereux (1878).

Gambierina askiniae[74]

Sp. nov

In press

Smith et al.

Early Paleogene

Antarctica

An angiosperm pollen species.

Herendeenoxylon[75]

Gen. et sp. nov

Valid

Chin et al.

Late Cretaceous (Turonian)

Moreno Hill Formation

 United States
( New Mexico)

A flowering plant of uncertain phylogenetic placement (possibly a member of Ericales), described on the basis of fossil wood. Genus includes new species H. zuniense.

Ladakhipollenites? densicolumellatus[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a flowering plant.

Ladakhipollenites? lolongatus[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of Symmeria paniculata.

Ladakhipollenites? porolenticularis[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a flowering plant (possibly a member of the family Marcgraviaceae).

Rhoipites? basicus[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a flowering plant.

Rhoipites manausensis[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a member of the genus Schefflera.

Rhoipites minuticirculus[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a flowering plant.

Rhoipites negroensis[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil pollen of a flowering plant.

Sherwinoxylon[76]

Gen. et sp. nov

In press

Boura & Saulnier in Boura et al.

Late Cretaceous (Cenomanian)

 France

A vesselless angiosperm fossil wood of uncertain affinity. Genus includes new species S. winteroides.

Vasunum[75]

Gen. et sp. nov

Valid

Chin et al.

Late Cretaceous (Turonian)

Moreno Hill Formation

 United States
( New Mexico)

A flowering plant of uncertain phylogenetic placement, described on the basis of fossil wood. Genus includes new species V. cretaceum.

Pinales[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Abies cuitlahuacii[77]

Sp. nov

Valid

Cevallos-Ferriz, Ríos-Santos & Lozano-García

Pleistocene

 Mexico

A fir.

Agathoxylon gilii[78]

Sp. nov

Valid

Ríos-Santos & Cevallos-Ferriz

Late Jurassic

Todos Santos Formation

 Mexico

Agathoxylon jericonse[78]

Sp. nov

Valid

Ríos-Santos & Cevallos-Ferriz

Late Jurassic

Todos Santos Formation

 Mexico

Agathoxylon kotaense[79]

Sp. nov

In press

Chinnappa, Rajanikanth & Pauline Sabina

?Late JurassicEarly Cretaceous

Kota Formation

 India

A member of the family Araucariaceae.

Agathoxylon parrensis[78]

Sp. nov

Valid

Ríos-Santos & Cevallos-Ferriz

Paleocene

Las Encinas Formation

 Mexico

Araucaria fildesensis[80]

Sp. nov

In press

Shi et al.

Eocene

Fossil Hill Formation

Antarctica
(King George Island)

A species of Araucaria.

Austrocupressinoxylon[81]

Gen. et sp. nov

Valid

Nunes et al.

Early Cretaceous

 Argentina

A member of Cupressaceae. Genus includes new species A. barcinense.

Callitris blackburnii[82]

Sp. nov

Valid

Paull et al.

Middle Miocene

 Australia

A species of Callitris.

Cephalotaxus maguanensis[83]

Sp. nov

In press

Zhang et al.

Middle Miocene

 China

A species of Cephalotaxus.

Cupressinoxylon pliocenica[52]

Sp. nov

In press

Akkemik

Pliocene

Örencik Formation

 Turkey

A member of the family Cupressaceae described on the basis of fossil wood.

Frenelopsis justae[84]

Sp. nov

In press

Barral et al.

Early Cretaceous (Albian)

Escucha Formation

 Spain

A member of the family Cheirolepidiaceae.

Kirketapel[85]

Gen. et sp. nov

Valid

Andruchow-Colombo et al.

Paleocene (early Danian)

Salamanca Formation

 Argentina

A member of the family Podocarpaceae. Genus includes new species K. salamanquensis.

Pinus plioarmandii[86]

Sp. nov

In press

An et al.

Pliocene

 China

A pine.

Pinuxylon alonissianum[87]

Sp. nov

Valid

Mantzouka & Sakala in Mantzouka et al.

Early Miocene

 Greece

A member of the family Pinaceae described on the basis of fossil wood.

Protocupressinoxylon carrizalense[88]

Sp. nov

In press

Correa et al.

Late Triassic

Carrizal Formation

 Argentina

Protodammara reimatamoriori[89]

Sp. nov

Valid

Mays & Cantrill

Late Cretaceous (Cenomanian)

Tupuangi Formation

 New Zealand

A member of Cupressaceae.

Schizolepidopsis borealis[90]

Sp. nov

Valid

Domogatskaya & Herman

Early Cretaceous (Albian)

Balyktakh Formation

 Russia

A member of the family Pinaceae.

Taxodioxylon cabullensis[78]

Sp. nov

Valid

Ríos-Santos & Cevallos-Ferriz

Late Cretaceous

Packard Formation

 Mexico

A conifer described on the basis of fossil wood.

Other seed plants[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Amyelon bogdense[91]

Sp. nov

Valid

Wan, Yang & Wang

Late Permian or Early Triassic

Guodikeng Formation

 China

A silicified gymnospermous root.

Axsmithia[92]

Gen. et comb. nov

Valid

Anderson et al.

Triassic

Antarctica

A seed fern. Genus includes "Umkomasia" uniramia Axsmith et al. (2000).

Bowenia johnsonii[93]

Sp. nov

Valid

Hill et al.

Early Eocene

 Australia

A cycad, a species of Bowenia.

Cordaabaxicutis jacobii[94]

Sp. nov

Valid

Šimůnek

Carboniferous (Pennsylvanian)

 Czech Republic

A member of Cordaitales.

Cordaadaxicutis detmarovicensis[94]

Sp. nov

Valid

Šimůnek

Carboniferous (Pennsylvanian)

 Czech Republic

A member of Cordaitales.

Cordaadaxicutis doubravensis[94]

Sp. nov

Valid

Šimůnek

Carboniferous (Pennsylvanian)

 Czech Republic

A member of Cordaitales.

Cordaadaxicutis jaroslavii[94]

Sp. nov

Valid

Šimůnek

Carboniferous (Pennsylvanian)

 Czech Republic

A member of Cordaitales.

Cordaadaxicutis orlovensis[94]

Sp. nov

Valid

Šimůnek

Carboniferous (Pennsylvanian)

 Czech Republic

A member of Cordaitales.

Douropteris[95]

Gen. et sp. nov

Valid

Correia et al.

Carboniferous (Gzhelian)

Douro Basin

 Portugal

A seed fern belonging to the group Medullosales. Genus includes new species D. alvarezii.

Kirchmuellia[92]

Gen. et comb. nov

Valid

Anderson et al.

Early Jurassic

 Germany

A seed fern. Genus includes "Umkomasia" franconica Kirchner & Müller (1992).

Ptilophyllum eminelidarum[96]

Sp. nov

Valid

Carrizo, Lafuente Diaz & Del Fueyo

Early Cretaceous

Springhill Formation

 Argentina

A member of Bennettitales.

Sagenopteris trapialensis[97]

Sp. nov

In press

Elgorriaga, Escapa & Cúneo

Early Jurassic

Lonco Trapial Formation

 Argentina

A member of Caytoniales.

Samaropsis jinchangensis[98]

Sp. nov

In press

Hua & Sun in Hua et al.

Early Permian

 China

A seed fossil.

Sclerospiroxylon xinjiangensis[99]

Sp. nov

Valid

Wan, Yang & Wang

Permian (Kungurian)

Hongyanchi Formation

 China

Umkomasia corniculata[100]

Sp. nov

In press

Shi et al.

Early Cretaceous (AptianAlbian)

 Mongolia

Umkomasia trilobata[100]

Sp. nov

In press

Shi et al.

Early Cretaceous (AptianAlbian)

 Mongolia

Zhangwuia[101]

Gen. et sp. nov

Valid

Liu, Hou & Wang

Middle Jurassic (Callovian)

Jiulongshan Formation

 China

A reproductive organ of a seed plant of uncertain phylogenetic placement. Genus includes new species Z. mira.

Other plants[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Acetabularia moldavica[102]

Sp. nov

Valid

Barattolo, Ionesi & Ţibuleac

Middle Miocene

 Romania

A green alga belonging to the family Polyphysaceae, a species of Acetabularia.

Aneurospora posongchongensis[103]

Sp. nov

Valid

Cascales-Miñana et al.

Early Devonian

Posongchong Formation

 China

A spore taxon.

Auerbachichara tataouinensis[104]

Sp. nov

Valid

Tiss et al.

Middle Jurassic (Callovian)

Foum Tataouine Formation

 Tunisia

A green alga belonging to the group Charophyta.

Bakalovaella deloffrei[105]

Sp. nov

Valid

Granier & Bucur

Early Cretaceous (Hauterivian)

 France

A green alga belonging to the family Dasycladaceae.

Bergeria wenquanensis[106]

Sp. nov

Valid

Feng, D’Rozario & Zhang

Carboniferous (Viséan)

Akeshake Formation

 China

A member of Lepidodendrales belonging to the family Flemingitaceae.

Buthograptus gundersoni[107]

Sp. nov

Valid

LoDuca

Ordovician (Sandbian)

Platteville Formation

 United States
( Wisconsin)

A green alga belonging to the group Bryopsidales.

Buthograptus meyeri[107]

Sp. nov

Valid

LoDuca

Ordovician (Sandbian)

Platteville Formation

 United States
( Wisconsin)

A green alga belonging to the group Bryopsidales.

Callixylon wendtii[108]

Sp. nov

Valid

Tanrattana, Meyer-Berthaud & Decombeix

Devonian (Famennian)

 Morocco

An archaeopteridalean progymnosperm.

Cingulatisporites oligodistalis[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore.

Concavissimisporites varzeanus[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore.

Coniopteris sandaolingensis[109]

Sp. nov

In press

Yuan & Sun in Yuan et al.

Middle Jurassic

Xishanyao Formation

 China

Cyathocarpus yongchangensis[110]

Sp. nov

In press

Sun & Sun in Sun et al.

Permian (Cisuralian)

Shanxi Formation

 China

A fern related to Psaronius.

Dissocladella compressa[111]

Sp. nov

Valid

Rashidi & Schlagintweit

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

A green alga belonging to the group Dasycladales.

Echinatisporis parviechinatus[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore.

Echinosporis conicus[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore.

Germera brousmicheae[112]

Sp. nov

Valid

Álvarez-Vázquez

Carboniferous (Westphalian)

 Canada

A member of Filicopsida.

Hausmannia olaensis[113]

Sp. nov

In press

Golovneva & Grabovskiy

Late Cretaceous (Santonian–early Campanian)

 Russia

A member of the family Dipteridaceae.

Jowingera[114]

Gen. et sp. nov

In press

Bickner & Tomescu

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

An early euphyllophyte. Genus includes new species J. triloba.

Khasurtythallus[115]

Gen. et sp. nov

In press

Mamontov in Mamontov & Ignatov

Early Cretaceous

 Russia
( Buryatia)

A liverwort belonging to the group Marchantiidae. Genus includes new species K. monosolenioides.

Kulindobryum[115]

Gen. et sp. nov

In press

Ignatov in Mamontov & Ignatov

Middle or Late Jurassic

Ukureyskaya Formation

 Russia
( Zabaykalsky Krai)

A form genus of dispersed moss capsules. Genus includes new species K. taylorioides.

Leonophyllum[116]

Gen. et sp. nov

Valid

Barbacka & Kustatscher in Barbacka et al.

Early Jurassic

 Hungary

A plant of uncertain phylogenetic placement, showing similarities to thalloid liverworts with raised vegetative bodies and to the fern family Hymenophyllaceae. Genus includes new species L. tenellum.

Leptocentroxyla[114]

Gen. et sp. nov

In press

Bickner & Tomescu

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

An early euphyllophyte. Genus includes new species L. tetrarcha.

Ninsaria[117]

Gen. et sp. nov

Valid

Decombeix, Galtier, McLoughlin & Meyer-Berthaud in Decombeix et al.

Carboniferous (Viséan)

Rockhampton Group

 Australia

A vascular plant belonging to the group Lignophytia, of uncertain phylogenetic placement within the latter group. Genus includes new species N. australiana.

Palaeosorum waipiata[118]

Sp. nov

Valid

Kaulfuss et al.

Early Miocene

 New Zealand

A member of the family Polypodiaceae.

Palambages pariunta[119]

Sp. nov

In press

Wainman et al.

Late Jurassic (late Kimmeridgian–early Tithonian)

Surat Basin

 Australia

A colonial alga belonging to the group Chlorophyta.

Paleaethallus[115]

Gen. et sp. nov

In press

Mamontov, Katagiri & Borovich in Mamontov & Ignatov

Late Jurassic

Glushkovo Formation

 Russia
( Zabaykalsky Krai)

A thalloid bryophyte. Genus includes new species P. squarrosus.

Patruliuspora[102]

Gen. et comb. nov

Valid

Barattolo, Ionesi & Ţibuleac

Late Triassic to Miocene

 Czech Republic
 France
 Slovakia

A green alga belonging to the family Polyphysaceae. Genus includes "Chalmasia" morelleti Pokorný (1948), "Halicoryne" carpatica Mišík (1987) and "Acicularia" valeti Segonzac (1970).

Phlebopteris kirchneri[120]

Sp. nov

Valid

Barbacka & Kustatscher in Barbacka, Kustatscher & Bodor

Early Jurassic (Hettangian)

Mecsek Coal Formation

 Hungary

A fern belonging to the family Matoniaceae.

Polypodiisporites serratus[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore of a member of the family Polypodiaceae.

Polypodiisporites timidus[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore of a member of the family Polypodiaceae.

Porochara schudackii[104]

Sp. nov

Valid

Tiss et al.

Middle Jurassic (Bajocian)

Krachoua Formation

 Tunisia

A green alga belonging to the group Charophyta.

Proodontosoria[121]

Gen. et sp. nov

In press

Li et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A fern belonging to the family Lindsaeaceae. Genus includes new species P. myanmarensis.

Rinistachya[122]

Gen. et sp. nov

Valid

Prestianni & Gess

Devonian (Famennian)

Witpoort Formation

 South Africa

A member of Sphenophyllales. Genus includes new species R. hilleri.

Stenoloboxyla[114]

Gen. et sp. nov

In press

Bickner & Tomescu

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

An early euphyllophyte. Genus includes new species S. ambigua.

Tainioxyla[114]

Gen. et sp. nov

In press

Bickner & Tomescu

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

An early euphyllophyte. Genus includes new species T. quebecana.

Thyrsopteris cretacea[123]

Sp. nov

In press

Li et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A species of Thyrsopteris.

Tiania resinus[124]

Sp. nov

Valid

He & Wang

Permian (Lopingian)

Xuanwei Formation

 China

A member of Osmundales belonging to the extinct family Guaireaceae.

Tichavekia[125]

Gen. et sp. nov

In press

Pšenička, Sakala & Kraft in Kraft et al.

Late Silurian

Prague Basin

 Czech Republic

A large early land plant. Genus includes new species T. grandis.

Uteria naghanensis[126]

Sp. nov

Valid

Rashidi & Schlagintweit

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

A green alga belonging to the family Polyphysaceae.

Verrucatotriletes laesuraverrucatus[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore.

Verrucatotriletes tortus[45]

Sp. nov

Valid

D'Apolito et al.

Pliocene–Pleistocene

 Brazil

Fossil spore.

References[edit]

  1. ^ Filippo Barattolo; Nicola Carras; Marc André Conrad; Rajka Radoičić (2019). "Falsolikanella campanensis (Azéma and Jaffrezo, 1972) Granier, 1987 revisited on type material, evidence of polyphysacean nature (green algae)". Journal of Paleontology. in press. doi:10.1017/jpa.2018.108.
  2. ^ Alexander J. Askew; Charles H. Wellman (2019). "An endemic flora of dispersed spores from the Middle Devonian of Iberia". Papers in Palaeontology. in press. doi:10.1002/spp2.1245.
  3. ^ Zhenzhu Wan; Thomas J. Algeo; Patricia G. Gensel; Stephen E. Scheckler; William E. Stein; Walter L. Cressler III; Christopher M. Berry; Honghe Xu; Harold D. Rowe; Peter E. Sauer (2019). "Environmental influences on the stable carbon isotopic composition of Devonian and Early Carboniferous land plants". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.02.025.
  4. ^ Borja Cascales‐Miñana; Philippe Steemans; Thomas Servais; Kevin Lepot; Philippe Gerrienne (2019). "An alternative model for the earliest evolution of vascular plants". Lethaia. in press. doi:10.1111/let.12323.
  5. ^ Nikole K. Bonacorsi; Andrew B. Leslie (2019). "Functional diversity and convergence in the evolution of plant reproductive structures". Annals of Botany. 123 (1): 145–152. doi:10.1093/aob/mcy151. PMC 6344085. PMID 30107388.
  6. ^ Olga A. Orlova; Natalia Zavialova; Sergey Snigirevsky; Aleftina Jurina; Anna Lidskaya (2019). "Kossoviella timanica Petrosjan emend. from the Upper Devonian of North Timan: morphology and spore ultrastructure". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 355–372. doi:10.1017/S1755691018000269.
  7. ^ Chunxiang Li; Xinyuan Miao; Li-Bing Zhang; Junye Ma; Jiasheng Hao (2019). "Re-evaluation of the systematic position of the Jurassic–Early Cretaceous fern genus Coniopteris". Cretaceous Research. in press. doi:10.1016/j.cretres.2019.04.007.
  8. ^ Yuangao Qu; Nicola McLoughlin; Mark. A. van Zuilen; Martin Whitehouse; Anders Engdahl; Vivi Vajda (2019). "Evidence for molecular structural variations in the cytoarchitectures of a Jurassic plant". Geology. 47 (4): 325–329. doi:10.1130/G45725.1.
  9. ^ Cunlin Xin; Jingjing Wang; Luhan Wang; Yamei Zhang (2019). "Numerical taxonomy and Bayes discriminant analysis on 42 fossil species in Dicksoniaceae from China". Acta Geologica Sinica (English Edition). 93 (1): 183–198. doi:10.1111/1755-6724.13777.
  10. ^ Cong‐Li Xu; Tao Su; Jian Huang; Yong‐Jiang Huang; Shu‐Feng Li; Yi‐Shan Zhao; Zhe‐Kun Zhou (2019). "Occurrence of Christella (Thelypteridaceae) in Southwest China and its indications of the paleoenvironment of the Qinghai–Tibetan Plateau and adjacent areas". Journal of Systematics and Evolution. 57 (2): 169–179. doi:10.1111/jse.12452.
  11. ^ Anuradha Tewari; Ashalata D'Rozario; Sharmila Bhattacharya; Ahinsuk Barua; Meghma Bera; Subir Bera; Suryendu Dutta (2019). "Biomarker signatures of the iconic Glossopteris plant". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.08.001.
  12. ^ Anju Saxena; Kamal Jeet Singh; Christopher J. Cleal; Shaila Chandra; Shreerup Goswami; Husain Shabbar (2019). "Development of the Glossopteris flora and its end Permian demise in the Tatapani–Ramkola Coalfield, Son–Mahanadi Basin, India". Geological Journal. in press. doi:10.1002/gj.3307.
  13. ^ Kathryn Edwina Hill; Robert Stephen Hill; Jennifer Robyn Watling (2019). "Pinnule and stomatal size and stomatal density of living and fossil Bowenia and Eobowenia specimens give insight into physiology during Cretaceous and Eocene paleoclimates". International Journal of Plant Sciences. 180 (4): 323–336. doi:10.1086/702643.
  14. ^ Qing-Min Meng; Conrad C. Labandeira; Qiao-Ling Ding; Dong Ren (2019). "The natural history of oviposition on a ginkgophyte fruit from the Middle Jurassic of northeastern China". Insect Science. 26 (1): 171–179. doi:10.1111/1744-7917.12506. PMID 28737833.
  15. ^ Atsushi Yabe; Eunkyoung Jeong; Kyungsik Kim; Kazuhiko Uemura (2019). "Oligocene–Neogene fossil history of Asian endemic conifer genera in Japan and Korea". Journal of Systematics and Evolution. 57 (2): 114–128. doi:10.1111/jse.12445.
  16. ^ Gabriela Gleiser; Karina L. Speziale; Sergio A. Lambertucci; Fernando Hiraldo; José L. Tella; Marcelo A. Aizen (2019). "Uncoupled evolution of male and female cone sizes in an ancient conifer lineage". International Journal of Plant Sciences. 180 (1): 72–80. doi:10.1086/700580.
  17. ^ Yan Wu; Jian‐Hua Jin; Nan Li; Hui‐Min He; Ting Chen; Xiao‐Yan Liu (2019). "Early Oligocene Calocedrus (Cupressaceae) from the Maoming Basin, South China, and its paleogeographic and paleoclimatic implications". Journal of Systematics and Evolution. 57 (2): 142–152. doi:10.1111/jse.12424.
  18. ^ Li Wang; Lutz Kunzmann; Tao Su; Yao-Wu Xing; Shi-Tao Zhang; Yu-Qing Wang; Zhe-Kun Zhou (2019). "The disappearance of Metasequoia (Cupressaceae) after the middle Miocene in Yunnan, Southwest China: Evidences for evolutionary stasis and intensification of Asian monsoon". Review of Palaeobotany and Palynology. 264: 64–74. doi:10.1016/j.revpalbo.2018.12.007.
  19. ^ Marc Philippe; Maxim Afonin; Sylvain Delzon; Gregory J. Jordan; Kazuo Terada; Mélanie Thiébaut (2019). "A paleobiogeographical scenario for the Taxaceae based on a revised fossil wood record and embolism resistance". Review of Palaeobotany and Palynology. 263: 147–158. doi:10.1016/j.revpalbo.2019.01.003.
  20. ^ Paula J. Rudall; Richard M. Bateman (2019). "Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales". Biological Reviews. in press. doi:10.1111/brv.12497. PMID 30714286.
  21. ^ Mario Coiro; James A. Doyle; Jason Hilton (2019). "How deep is the conflict between molecular and fossil evidence on the age of angiosperms?". New Phytologist. in press. doi:10.1111/nph.15708. PMID 30681148.
  22. ^ George Poinar; Greg Poinar (2019). "The antiquity of floral secretory tissues that provide today's fragrances". Historical Biology: An International Journal of Paleobiology. in press: 1–6. doi:10.1080/08912963.2018.1502288.
  23. ^ Yong‐Jiang Huang; Hai Zhu; Arata Momohara; Lin‐Bo Jia; Zhe‐Kun Zhou (2019). "Fruit fossils of Rosoideae (Rosaceae) from the late Pliocene of northwestern Yunnan, Southwest China". Journal of Systematics and Evolution. 57 (2): 180–189. doi:10.1111/jse.12443.
  24. ^ He Xu; Tao Su; Zhe‐Kun Zhou (2019). "Leaf and infructescence fossils of Alnus (Betulaceae) from the late Eocene of the southeastern Qinghai–Tibetan Plateau". Journal of Systematics and Evolution. 57 (2): 105–113. doi:10.1111/jse.12463.
  25. ^ Carina Hoorn; Raymond van der Ham; Felipe de la Parra; Sonia Salamanca; Hans ter Steege; Hannah Banks; Wim Star; Bertie Joan van Heuven; Rob Langelaan; Fernanda A. Carvalho; Guillermo Rodriguez-Forero; Laura P. Lagomarsino (2019). "Going north and south: The biogeographic history of two Malvaceae in the wake of Neogene Andean uplift and connectivity between the Americas". Review of Palaeobotany and Palynology. 264: 90–109. doi:10.1016/j.revpalbo.2019.01.010.
  26. ^ Jordan B. Bemmels; L. Lacey Knowles; Christopher W. Dick (2019). "Genomic evidence of survival near ice sheet margins for some, but not all, North American trees". Proceedings of the National Academy of Sciences of the United States of America. in press. doi:10.1073/pnas.1901656116. PMID 30962371.
  27. ^ Carlos A. Góis-Marques; Ria L. Mitchell; Lea de Nascimento; José María Fernández-Palacios; José Madeira; Miguel Menezes de Sequeira (2019). "Eurya stigmosa (Theaceae), a new and extinct record for the Calabrian stage of Madeira Island (Portugal): 40Ar/39Ar dating, palaeoecological and oceanic island palaeobiogeographical implications". Quaternary Science Reviews. 206: 129–140. doi:10.1016/j.quascirev.2019.01.008.
  28. ^ Mauro G. Passalia; Nicolás Caviglia; Ezequiel I. Vera (2019). "Lithraea australis (Berry) comb. nov. (Anacardiaceae) from the upper section of Ñirihuau Formation (middle Miocene), Patagonia". Review of Palaeobotany and Palynology. 266: 1–11. doi:10.1016/j.revpalbo.2019.04.003.
  29. ^ Hendrik Nowak; Elke Schneebeli-Hermann; Evelyn Kustatscher (2019). "No mass extinction for land plants at the Permian–Triassic transition". Nature Communications. 10: Article number 384. doi:10.1038/s41467-018-07945-w. PMC 6344494. PMID 30674875.
  30. ^ Christopher R. Fielding; Tracy D. Frank; Stephen McLoughlin; Vivi Vajda; Chris Mays; Allen P. Tevyaw; Arne Winguth; Cornelia Winguth; Robert S. Nicoll; Malcolm Bocking; James L. Crowley (2019). "Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis". Nature Communications. 10: Article number 385. doi:10.1038/s41467-018-07934-z. PMC 6344581. PMID 30674880.
  31. ^ Stephen McLoughlin; Christian Pott (2019). "Plant mobility in the Mesozoic: Disseminule dispersal strategies of Chinese and Australian Middle Jurassic to Early Cretaceous plants". Palaeogeography, Palaeoclimatology, Palaeoecology. 515: 47–69. doi:10.1016/j.palaeo.2017.12.036.
  32. ^ Zikun Jiang; Benpei Liu; Yongdong Wang; Min Huang; Tom Kapitany; Ning Tian; Yong Cao; Yuanzheng Lu; Shenghui Deng (2019). "Tree ring phototropism and implications for the rotation of the North China Block". Scientific Reports. 9: Article number 4856. doi:10.1038/s41598-019-41339-2. PMC 6425038. PMID 30890749.
  33. ^ Edilson Bezerra dos Santos Filho; Karen Adami-Rodrigues; Flaviana Jorge de Lima; Renan Alfredo Machado Bantim; Torsten Wappler; Antônio Álamo Feitosa Saraiva (2019). "Evidence of plant–insect interaction in the Early Cretaceous Flora from the Crato Formation, Araripe Basin, Northeast Brazil". Historical Biology: An International Journal of Paleobiology. in press: 1–12. doi:10.1080/08912963.2017.1408611.
  34. ^ Pablo Estévez-Gallardo; Luis M. Sender; Eduardo Mayoral; José B. Diez (2019). "First evidence of insect herbivory on Albian aquatic angiosperms of the NE Iberian Peninsula". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 429–435. doi:10.1017/S1755691018000555.
  35. ^ Olesya V. Bondarenko; Nadezhda I. Blokhina; Torsten Utescher (2019). "Major plant biome changes in the Primorye Region (Far East of Russia) during the Paleogene". Botanica Pacifica. A journal of plant science and conservation. in press. doi:10.17581/bp.2019.08106.
  36. ^ Tao Su; Robert A. Spicer; Shi-Hu Li; He Xu; Jian Huang; Sarah Sherlock; Yong-Jiang Huang; Shu-Feng Li; Li Wang; Lin-Bo Jia; Wei-Yu-Dong Deng; Jia Liu; Cheng-Long Deng; Shi-Tao Zhang; Paul J. Valdes; Zhe-Kun Zhou (2019). "Uplift, climate and biotic changes at the Eocene-Oligocene transition in southeast Tibet". National Science Review. in press. doi:10.1093/nsr/nwy062.
  37. ^ Keke Ai; Gongle Shi; Kexin Zhang; Junliang Ji; Bowen Song; Tianyi Shen; Shuangxing Guo (2019). "The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane". Palaeogeography, Palaeoclimatology, Palaeoecology. 515: 143–151. doi:10.1016/j.palaeo.2018.04.017.
  38. ^ Svetlana Popova; Torsten Utescher; Dmitry Gromyko; Volker Mosbrugger; Louis François (2019). "Dynamics and evolution of Turgay‐type vegetation in Western Siberia throughout the early Oligocene to earliest Miocene—a study based on diversity of plant functional types in the carpological record". Journal of Systematics and Evolution. 57 (2): 129–141. doi:10.1111/jse.12420.
  39. ^ Ethan G. Hyland; Nathan D. Sheldon; Selena Y. Smith; Caroline A.E. Strömberg (2019). "Late Miocene rise and fall of C4 grasses in the western United States linked to aridification and uplift". GSA Bulletin. 131 (1–2): 224–234. doi:10.1130/B32009.1.
  40. ^ Anne-Marie Lézine; Kenji Izumi; Masa Kageyama; Gaston Achoundong (2019). "A 90,000-year record of Afromontane forest responses to climate change". Science. 363 (6423): 177–181. doi:10.1126/science.aav6821. PMID 30630932.
  41. ^ a b c d e f g h i j k Alexander B. Doweld (2019). "New names for Ilex and Ilexpollenites (Aquifoliaceae), extant and fossil. Notulae Systematicae ad Palaeofloram Europaeam spectantes II. Aquifoliaceae". Phytotaxa. 388 (2): 179–191. doi:10.11646/phytotaxa.388.2.5.
  42. ^ T. Su; A. Farnsworth; R. A. Spicer; J. Huang; F.-X. Wu; J. Liu; S.-F. Li; Y.-W. Xing; Y.-J. Huang; W.-Y.-D. Deng; H. Tang; C.-L. Xu; F. Zhao; G. Srivastava; P. J. Valdes; T. Deng; Z.-K. Zhou (2019). "No high Tibetan Plateau until the Neogene". Science Advances. 5 (3): eaav2189. doi:10.1126/sciadv.aav2189. PMC 6402856. PMID 30854430.
  43. ^ a b Friðgeir Grímsson; Bonnie F. Jacobs; Johan L. C. H. Van Valkenburg; Jan J. Wieringa; Alexandros Xafis; Neil Tabor; Aaron D. Pan; Reinhard Zetter (2019). "Sclerosperma fossils from the late Oligocene of Chilga, north-western Ethiopia". Grana. 58 (2): 81–98. doi:10.1080/00173134.2018.1510977.
  44. ^ a b Luis Miguel Sender; James A. Doyle; Garland R. Upchurch Jr; Uxue Villanueva-Amadoz; José B. Diez (2019). "Leaf and inflorescence evidence for near-basal Araceae and an unexpected diversity of other monocots from the late Early Cretaceous of Spain". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2018.1528999.
  45. ^ a b c d e f g h i j k l m n o p q r Carlos D'Apolito; Silane A. F. da Silva-Caminha; Carlos Jaramillo; Rodolfo Dino; Emílio A. A. Soares (2019). "The Pliocene–Pleistocene palynology of the Negro River, Brazil". Palynology. 43 (2): 223–243. doi:10.1080/01916122.2018.1437090.
  46. ^ John G. Conran; Uwe Kaulfuss; Jennifer M. Bannister; Dallas C. Mildenhall; Daphne E. Lee (2019). "An Akania (Akaniaceae) inflorescence with associated pollen from the early Miocene of New Zealand". American Journal of Botany. 106 (2): 292–302. doi:10.1002/ajb2.1236. PMID 30791095.
  47. ^ Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2019). "Hedyosmum-like fossils in the Early Cretaceous diversification of angiosperms". International Journal of Plant Sciences. 180 (3): 232–239. doi:10.1086/701819.
  48. ^ Brian A. Atkinson; Camila Martínez; William L. Crepet (2019). "Cretaceous asterid evolution: fruits of Eydeia jerseyensis sp. nov. (Cornales) from the upper Turonian of eastern North America". Annals of Botany. 123 (3): 451–460. doi:10.1093/aob/mcy170. PMID 30212854.
  49. ^ Ana L. Hernández-Damián; Sergio R. S. Cevallos-Ferriz; Alma R. Huerta-Vergara (2019). "Fossil flower of Staphylea L. from the Miocene amber of Mexico: New evidence of the Boreotropical Flora in low-latitude North America". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 471–478. doi:10.1017/S1755691018000701.
  50. ^ Rakesh Chandra Mehrotra; Anumeha Shukla (2019). "First record of Dioscorea from the early Eocene of northwestern India: Its evolutionary and palaeoecological importance". Review of Palaeobotany and Palynology. 261: 11–17. doi:10.1016/j.revpalbo.2018.11.008.
  51. ^ Patrick S. Herendeen; Fabiany Herrera (2019). "Eocene fossil legume leaves referable to the extant genus Arcoa (Caesalpinioideae, Leguminosae)". International Journal of Plant Sciences. 180 (3): 220–231. doi:10.1086/701468.
  52. ^ a b Ünal Akkemik (2019). "New fossil wood descriptions from Pliocene of central Anatolia and presence of Taxodioxylon in Turkey from Oligocene to Pliocene". Turkish Journal of Earth Sciences. in press. doi:10.3906/yer-1805-24.
  53. ^ Xiao‐Yan Liu; Sheng‐Lan Xu; Meng Han; Jian‐Hua Jin (2019). "An early Oligocene fossil acorn, associated leaves and pollen of the ring‐cupped oaks (Quercus subg. Cyclobalanopsis) from Maoming Basin, South China". Journal of Systematics and Evolution. 57 (2): 153–168. doi:10.1111/jse.12450.
  54. ^ a b c d e f g h i j k l m D.W. Woodcock; H.W. Meyer; Y. Prado (2019). "The Piedra Chamana fossil woods (Eocene, Peru), II". IAWA Journal. in press. doi:10.1163/22941932-40190231.
  55. ^ a b Cédric Del Rio; Gregory W. Stull; Dario De Franceschi (2019). "New species of Iodes fruits (Icacinaceae) from the early Eocene Le Quesnoy locality, Oise, France". Review of Palaeobotany and Palynology. 262: 60–71. doi:10.1016/j.revpalbo.2018.12.005.
  56. ^ a b c d e Cédric Del Rio; Romain Thomas; Dario De Franceschi (2019). "Fruits of Icacinaceae Miers from the Palaeocene of the Paris Basin (Oise, France)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 459–469. doi:10.1017/S1755691018000221.
  57. ^ a b c d e Zixi Wang; Fankai Sun; Jidong Wang; Defei Yan; Junling Dong; Mingxuan Sun; Bainian Sun (2019). "New fossil leaves and fruits of Lauraceae from the Middle Miocene of Fujian, southeastern China differentiated using a cluster analysis". Historical Biology: An International Journal of Paleobiology. 31 (5): 581–599. doi:10.1080/08912963.2017.1379517.
  58. ^ Qijia Li; Gongle Shi; Yusheng Liu; Qiongyao Fu; Jianhua Jin; Cheng Quan (2019). "The early history of Annonaceae (Magnoliales) in Southeast Asia suggests floristic exchange between India and Pan‐Indochina by the late Oligocene". Papers in Palaeontology. in press. doi:10.1002/spp2.1249.
  59. ^ Lu‐Liang Huang; Jian‐Hua Jin; Cheng Quan; Alexei A. Oskolski (2019). "Mummified Magnoliaceae woods from the upper Oligocene of South China, with biogeography, paleoecology and wood trait evolution implications". Journal of Systematics and Evolution. in press. doi:10.1111/jse.12480.
  60. ^ a b Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2019). "Extinct diversity among Early Cretaceous angiosperms: mesofossil evidence of early Magnoliales from Portugal". International Journal of Plant Sciences. 180 (2): 93–127. doi:10.1086/701319.
  61. ^ Zixi Wang; Fankai Sun; Jidong Wang; Junling Dong; Sanping Xie; Mingxuan Sun; Bainian Sun (2019). "The diversity and paleoenvironmental significance of Calophyllum (Clusiaceae) from the Miocene of southeastern China". Historical Biology: An International Journal of Paleobiology. in press: 1–15. doi:10.1080/08912963.2018.1455677.
  62. ^ Rashmi Srivastava; Regis B. Miller; Pieter Baas (2019). "More Malpighiales: Woods of Achariaceae and/or Salicaceae from the Deccan Intertrappean Beds, India". Journal of Systematics and Evolution. 57 (2): 200–208. doi:10.1111/jse.12455.
  63. ^ Zixi Wang; Fankai Sun; Sanping Xie; Jidong Wang; Yijie Li; Junling Dong; Mingxuan Sun; Bainian Sun (2019). "A new species of Garcinia (Clusiaceae) from the middle Miocene of Fujian, China, and a phytogeographic analysis". Geological Journal. 54 (3): 1317–1330. doi:10.1002/gj.3228.
  64. ^ Naylet K. Centeno-González; Héctor Porras-Múzquiz; Emilio Estrada-Ruiz (2019). "A new fossil genus of angiosperm leaf from the Olmos Formation (upper Campanian), of northern Mexico". Journal of South American Earth Sciences. 91: 80–87. doi:10.1016/j.jsames.2019.01.016.
  65. ^ a b c d Gaurav Srivastava; Tao Su; Rakesh Chandra Mehrotra; Pushpa Kumari; Uma Shankar (2019). "Bamboo fossils from Oligo–Pliocene sediments of northeast India with implications on their evolutionary ecology and biogeography in Asia". Review of Palaeobotany and Palynology. 262: 17–27. doi:10.1016/j.revpalbo.2018.12.002.
  66. ^ Ping Lu; Ya Li; Jian-Wei Zhang; Xiao-Qing Liang; Yue-Zhuo Li; Cheng-Sen Li (2019). "Fruits of Scirpus (Cyperaceae) from the early Miocene of Weichang, Hebei Province, North China and their palaeoecological and palaeobiogeographical implications". Journal of Palaeogeography. 8 (1): Article 15. doi:10.1186/s42501-019-0030-x.
  67. ^ Ge Sun; Tatiana Kovaleva; Fei Liang; Tao Yang; Yuhui Feng (2019). "A new species of Platanus from the Cenomanian (Upper Cretaceous) in eastern Heilongjiang, China". Geoscience Frontiers. in press. doi:10.1016/j.gsf.2018.10.006.
  68. ^ Lin‐Bo Jia; Tao Su; Yong‐Jiang Huang; Fei‐Xiang Wu; Tao Deng; Zhe‐Kun Zhou (2019). "First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai–Tibetan Plateau: Implications for morphological evolution and biogeography". Journal of Systematics and Evolution. 57 (2): 94–104. doi:10.1111/jse.12435.
  69. ^ a b Alexander B. Doweld (2019). "New names of fossil Rubus (Rosaceae). Addendum I". Phytotaxa. 393 (2): 198–200. doi:10.11646/phytotaxa.393.2.6.
  70. ^ Jia Liu; Tao Su; Robert A. Spicer; He Tang; Wei-Yu-Dong Deng; Fei-Xiang Wu; Gaurav Srivastava; Teresa Spicer; Truong Van Do; Tao Deng; Zhe-Kun Zhou (2019). "Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene". Palaeogeography, Palaeoclimatology, Palaeoecology. 524: 33–40. doi:10.1016/j.palaeo.2019.02.022.
  71. ^ Hui Jiang; Tao Su; William Oki Wong; Feixiang Wu; Jian Huang; Gongle Shi (2019). "Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus". Journal of Asian Earth Sciences. 175: 99–108. doi:10.1016/j.jseaes.2018.01.014.
  72. ^ Aixa Tosal; Josep Sanjuan; Carles Martín-Closas (2019). "Foliar adaptations of Rhus asymmetrica sp. nov. from the Oligocene of Cervera (Catalonia, Spain). Palaeoclimatic implications". Review of Palaeobotany and Palynology. 261: 67–80. doi:10.1016/j.revpalbo.2018.11.011.
  73. ^ Natalia P. Maslova; Tatiana M. Kodrul; Alexei B. Herman; Ming Tu; Xiaoyan Liu; Jianhua Jin (2019). "A new species of Liquidambar (Altingiaceae) from the late Eocene of South China". Journal of Plant Research. 132 (2): 223–236. doi:10.1007/s10265-019-01091-0. PMID 30840210.
  74. ^ a b Catherine Smith; Sophie Warny; Amelia E. Shevenell; Sean P.S. Gulick; Amy Leventer (2019). "New species from the Sabrina Flora: an early Paleogene pollen and spore assemblage from the Sabrina Coast, East Antarctica". Palynology. in press. doi:10.1080/01916122.2018.1471422.
  75. ^ a b Karen Chin; Emilio Estrada-Ruiz; Elisabeth A. Wheeler; Garland R. Upchurch Jr.; Douglas G. Wolfe (2019). "Early angiosperm woods from the mid-Cretaceous (Turonian) of New Mexico, USA: Paraphyllanthoxylon, two new taxa, and unusual preservation". Cretaceous Research. 98: 292–304. doi:10.1016/j.cretres.2019.01.017.
  76. ^ A. Boura; G. Saulnier; D. De Franceschi; B. Gomez; V. Daviero-Gomez; D. Pons; G. Garcia; N. Robin; J-M. Boiteau; X. Valentin (2019). "An early record of a vesselless angiosperm from the middle Cenomanian of the Envigne valley (Vienne, Western France)". IAWA Journal. in press. doi:10.1163/22941932-40190238.
  77. ^ Sergio R.S. Cevallos-Ferriz; César Ríos-Santos; Socorro Lozano-García (2019). "Abies cuitlahuacii sp. nov., a mummified late Quaternary fossil wood from Chalco, Mexico" (PDF). Boletín de la Sociedad Geológica Mexicana. 71 (1): 193–206. doi:10.18268/BSGM2019v71n1a10.
  78. ^ a b c d César Ríos-Santos; Sergio R. S. Cevallos-Ferriz (2019). "Upper Jurassic, Upper Cretaceous and Palaeocene conifer woods from Mexico". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 399–418. doi:10.1017/S1755691018000245.
  79. ^ Chopparapu Chinnappa; Annamraju Rajanikanth; Kavali Pauline Sabina (2019). "Palaeofloras from the Kota Formation, India: palaeodiversity and ecological implications". Volumina Jurassica. in press.
  80. ^ Gongle Shi; Haomin Li; Andrew B. Leslie; Zhiyan Zhou (2019). "Araucaria bract-scale complex and associated foliage from the early-middle Eocene of Antarctica and their implications for Gondwanan biogeography". Historical Biology: An International Journal of Paleobiology. in press: 1–10. doi:10.1080/08912963.2018.1472255.
  81. ^ Cristina I. Nunes; Josefina Bodnar; Ignacio H. Escapa; María A. Gandolfo; N. Rubén Cúneo (2019). "A new cupressaceous wood from the Lower Cretaceous of Central Patagonia reveals possible clonal growth habit". Cretaceous Research. 99: 133–148. doi:10.1016/j.cretres.2019.02.013.
  82. ^ Rosemary Paull; Robert S. Hill; Gregory J. Jordan; J.M. Kale Sniderman (2019). "Mid Miocene–Last Interglacial Callitris (Cupressaceae) from south-eastern Australia". Review of Palaeobotany and Palynology. 263: 1–11. doi:10.1016/j.revpalbo.2019.01.005.
  83. ^ Jian-Wei Zhang; Ashalata D’Rozario; Xiao-Qing Liang; Zhe-Kun Zhou (2019). "Middle Miocene Cephalotaxus (Taxaceae) from Yunnan, Southwest China, and its implications to taxonomy and evolution of the genus". Palaeoworld. in press. doi:10.1016/j.palwor.2019.01.002.
  84. ^ Abel Barral; Bernard Gomez; Véronique Daviero-Gomez; Christophe Lécuyer; Mário Miguel Mendes; Timothy A.M. Ewin (2019). "New insights into the morphology and taxonomy of the Cretaceous conifer Frenelopsis based on a new species from the Albian of San Just, Teruel, Spain". Cretaceous Research. 95: 21–36. doi:10.1016/j.cretres.2018.11.004.
  85. ^ Ana Andruchow-Colombo; Ignacio H. Escapa; Raymond J. Carpenter; Robert S. Hill; Ari Iglesias; Ana M. Abarzua; Peter Wilf (2019). "Oldest record of the scale-leaved clade of Podocarpaceae, early Paleocene of Patagonia, Argentina". Alcheringa: An Australasian Journal of Palaeontology. 43 (1): 127–145. doi:10.1080/03115518.2018.1517222.
  86. ^ Peng-Cheng An; De-Liang Tang; Hui Chen; Qian Yang; Su-Ting Ding; Jing-Yu Wu (2019). "Pliocene white pine (Pinus subgenus Strobus) needles from western Yunnan, southwestern China". Historical Biology: An International Journal of Paleobiology. in press: 1–11. doi:10.1080/08912963.2018.1461216.
  87. ^ Dimitra Mantzouka; Jakub Sakala; Zlatko Kvaček; Efterpi Koskeridou; Chryssanthi Ioakim (2019). "Two fossil conifer species from the Neogene of Alonissos Island (Iliodroma, Greece)". Geodiversitas. 41 (3): 125–142. doi:10.5252/geodiversitas2019v41a3.
  88. ^ Gustavo Correa; Josefina Bodnar; Carina Colombi; Paula Santi Malnis; Angel Praderio; Ricardo Martínez; Cecilia Apaldetti; Eliana Fernández; Diego Abelín; Oscar Alcober (2019). "Systematics and taphonomy of fossil woods from a new locality in the Upper Triassic Carrizal Formation of the El Gigantillo area (Marayes-El Carrizal Basin), San Juan, Argentina". Journal of South American Earth Sciences. 90: 94–106. doi:10.1016/j.jsames.2018.11.027.
  89. ^ Chris Mays; David J. Cantrill (2019). "Protodammara reimatamoriori, a new species of conifer (Cupressaceae) from the Upper Cretaceous Tupuangi Formation, Chatham Islands, Zealandia". Alcheringa: An Australasian Journal of Palaeontology. 43 (1): 114–126. doi:10.1080/03115518.2017.1417478.
  90. ^ Ksenia V. Domogatskaya; Alexei B. Herman (2019). "New species of the genus Schizolepidopsis (conifers) from the Albian of the Russian high Arctic and geological history of the genus". Cretaceous Research. 97: 73–93. doi:10.1016/j.cretres.2019.01.012.
  91. ^ Mingli Wan; Wan Yang; Jun Wang (2019). "Amyelon bogdense sp. nov., a silicified gymnospermous root from the Changhsingian–Induan (?) in southern Bogda Mountains, northwestern China". Review of Palaeobotany and Palynology. 263: 12–27. doi:10.1016/j.revpalbo.2019.01.004.
  92. ^ a b Heidi M. Anderson; Maria K. Barbacka; Marion K. Bamford; W. B. Keith Holmes; John M. Anderson (2019). "Umkomasia (megasporophyll): part 1 of a reassessment of Gondwana Triassic plant genera and a reclassification of some previously attributed". Alcheringa: An Australasian Journal of Palaeontology. 43 (1): 43–70. doi:10.1080/03115518.2018.1554748.
  93. ^ Robert S. Hill; Kathryn E. Hill; Raymond J. Carpenter; Gregory J. Jordan (2019). "New macrofossils of the Australian cycad Bowenia and their significance in reconstructing the past morphological range of the genus". International Journal of Plant Sciences. 180 (2): 128–140. doi:10.1086/701103.
  94. ^ a b c d e Zbyněk Šimůnek (2019). "The earliest evidence of cordaitalean cuticles from coal in the Pennsylvanian of Europe (Langsettian, Upper Silesian Basin, Czech Republic)". Review of Palaeobotany and Palynology. 261: 81–94. doi:10.1016/j.revpalbo.2018.11.007.
  95. ^ Pedro Correia; Zbynĕk Šimůnek; Christopher J. Cleal; Artur A. Sá (2019). "Douropteris alvarezii gen. nov., sp. nov., a new medullosalean pteridosperm from the Late Pennsylvanian of Portugal". Geological Journal. 54 (3): 1567–1577. doi:10.1002/gj.3251.
  96. ^ Martín A. Carrizo; Maiten A. Lafuente Diaz; Georgina M. Del Fueyo (2019). "Resolving taxonomic problems through cuticular analysis in Early Cretaceous bennettitalean leaves from Patagonia". Cretaceous Research. 97: 40–51. doi:10.1016/j.cretres.2019.01.013.
  97. ^ Andrés Elgorriaga; Ignacio H. Escapa; N. Rubén Cúneo (2019). "Southern Hemisphere Caytoniales: vegetative and reproductive remains from the Lonco Trapial Formation (Lower Jurassic), Patagonia". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2018.1535456.
  98. ^ Yifan Hua; Xuelian Wang; Junlin Dong; Yanzhao Ji; Bainian Sun (2019). "A number of new seed fossils from the lower Permian of Gansu, Northwest China: implication for research on arils". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2019.1566323.
  99. ^ Mingli Wan; Wan Yang; Jun Wang (2019). "Sclerospiroxylon xinjiangensis nov. sp., a gymnospermous wood from the Kungurian (lower Permian) southern Bogda Mountains, northwestern China: systematics and palaeoecology". Geobios. 52: 85–97. doi:10.1016/j.geobios.2018.11.005.
  100. ^ a b Gongle Shi; Peter R. Crane; Patrick S. Herendeen; Niiden Ichinnorov; Masamichi Takahashi; Fabiany Herrera (2019). "Diversity and homologies of corystosperm seed-bearing structures from the Early Cretaceous of Mongolia". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2018.1493547.
  101. ^ Zhong-Jian Liu; Ye-Mao Hou; Xin Wang (2019). "Zhangwuia: an enigmatic organ with a bennettitalean appearance and enclosed ovules". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 419–428. doi:10.1017/S1755691018000257.
  102. ^ a b Filippo Barattolo; Viorel Ionesi; Paul Ţibuleac (2019). "A new polyphysacean alga from the Miocene of Romania and its biomineralization". Acta Palaeontologica Polonica. 64 (1): 85–100. doi:10.4202/app.00537.2018.
  103. ^ B. Cascales-Miñana; J. Z. Xue; G. Rial; P. Gerrienne; P. Huang; P. Steemans (2019). "Revisiting the spore assemblages from the Lower Devonian Posongchong Formation of Wenshan, Yunnan Province, southwestern China". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 339–354. doi:10.1017/S1755691018000233.
  104. ^ a b Lassad Tiss; Khaled Trabelsi; Fekri Kamoun; Mohamed Soussi; Yassine Houla; Benjamin Sames; Carles Martín-Closas (2019). "Middle Jurassic charophytes from southern Tunisia: Implications on evolution and paleobiogeography". Review of Palaeobotany and Palynology. 263: 65–84. doi:10.1016/j.revpalbo.2019.01.011.
  105. ^ Bruno R.C. Granier; Ioan I. Bucur (2019). "Le genre Bakalovaella Bucur, 1993 (Dasycladeae, Dasycladaceae), et description de son plus ancien représentant crétacé". Carnets de Géologie. 19 (1): 1–19. doi:10.4267/2042/69540.
  106. ^ Ru Feng; Ashalata D’Rozario; Jian-Wei Zhang (2019). "A new Bergeria (Flemingitaceae) from the Mississippian of Xinjiang, NW China and its evolutionary implications". Journal of Palaeogeography. 8: Article 4. doi:10.1186/s42501-018-0020-4.
  107. ^ a b Steven T. LoDuca (2019). "New Ordovician marine macroalgae from North America, with observations on Buthograptus, Callithamnopsis, and Chaetocladus". Journal of Paleontology. 93 (2): 197–214. doi:10.1017/jpa.2018.76.
  108. ^ Mélanie Tanrattana; Brigitte Meyer-Berthaud; Anne-Laure Decombeix (2019). "Callixylon wendtii sp. nov., a new species of archaeopteridalean progymnosperm from the Late Devonian of Anti-Atlas, Morocco". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 373–385. doi:10.1017/S1755691017000457.
  109. ^ Xiu-Cai Yuan; Cong-Hui Xiong; Fan-Kai Sun; Zi-Xi Wang; Teng Mao; Yi-Jie Li; Chun-Hui Liu; Ming-Xuan Sun; Jun-Ling Dong; Bai-Nian Sun (2019). "The geological significance of a new species of Coniopteris from the Middle Jurassic of northwestern China". Historical Biology: An International Journal of Paleobiology. in press: 1–14. doi:10.1080/08912963.2018.1488251.
  110. ^ Fankai Sun; Conghui Xiong; Zixi Wang; Jidong Wang; Mingxuan Sun; Xuelian Wang; Bainian Sun (2019). "A new species of Cyathocarpus with in situ spores from the lower Permian of Gansu, northwestern China". Historical Biology: An International Journal of Paleobiology. in press: 1–12. doi:10.1080/08912963.2017.1396321.
  111. ^ K. Rashidi; F. Schlagintweit (2019). "Dissocladella compressa n. sp., a new Dasycladale (green algae) from the Upper Maastrichtian of Iran". Arabian Journal of Geosciences. 12 (7): Article 247. doi:10.1007/s12517-019-4403-3.
  112. ^ Carmen Álvarez-Vázquez (2019). "Filicopsida from the lower Westphalian (Middle Pennsylvanian) of Nova Scotia and New Brunswick, Maritime Provinces, Canada". Atlantic Geology. 55: 1–55. doi:10.4138/atlgeol.2019.001. ISSN 1718-7885.
  113. ^ L.B. Golovneva; A.A. Grabovskiy (2019). "The genus Hausmannia (Dipteridaceae) in the Cretaceous of the North-East of Russia and its paleobiogeographic implications". Cretaceous Research. 93: 22–32. doi:10.1016/j.cretres.2018.09.001.
  114. ^ a b c d Maya A. Bickner; Alexandru M.F. Tomescu (2019). "Structurally complex, yet anatomically plesiomorphic: permineralized plants from the Emsian of Gaspé (Quebec, Canada) expand the diversity of Early Devonian euphyllophytes". IAWA Journal. in press. doi:10.1163/22941932-40190234.
  115. ^ a b c Yuriy S. Mamontov; Michael S. Ignatov (2019). "How to rely on the unreliable: examples from Mesozoic bryophytes of Transbaikalia". Journal of Systematics and Evolution. in press. doi:10.1111/jse.12483.
  116. ^ Maria Barbacka; Grzegorz Pacyna; Artur Górecki; Evelyn Kustatscher (2019). "Leonophyllum tenellum nov. gen., nov. sp., an enigmatic plant from the Early Jurassic of the Mecsek Mts (Hungary)". Geobios. 53: 1–7. doi:10.1016/j.geobios.2019.02.004.
  117. ^ Anne-Laure Decombeix; Jean Galtier; Stephen McLoughlin; Brigitte Meyer-Berthaud; Gregory E. Webb; Paul R. Blake (2019). "Early Carboniferous lignophyte tree diversity in Australia: Woods from the Drummond and Yarrol basins, Queensland". Review of Palaeobotany and Palynology. 263: 47–64. doi:10.1016/j.revpalbo.2019.01.009.
  118. ^ Uwe Kaulfuss; John G. Conran; Jennifer M. Bannister; Dallas C. Mildenhall; Daphne E. Lee (2019). "A new Miocene fern (Palaeosorum: Polypodiaceae) from New Zealand bearing in situ spores of Polypodiisporites". New Zealand Journal of Botany. 57 (1): 2–17. doi:10.1080/0028825X.2018.1560336.
  119. ^ Carmine C. Wainman; Daniel J. Mantle; Carey Hannaford; Peter J. McCabe (2019). "Possible freshwater dinoflagellate cysts and colonial algae from the Upper Jurassic strata of the Surat Basin, Australia". Palynology. in press: 1–12. doi:10.1080/01916122.2018.1451785.
  120. ^ Maria Barbacka; Evelyn Kustatscher; Emese R. Bodor (2019). "Ferns of the Lower Jurassic from the Mecsek Mountains (Hungary): taxonomy and palaeoecology". PalZ. 93 (1): 151–185. doi:10.1007/s12542-018-0430-8.
  121. ^ Chunxiang Li; Robbin C. Moran; Junye Ma; Bo Wang; Jiasheng Hao (2019). "A new fossil record of Lindsaeaceae (Polypodiales) from the mid-Cretaceous amber of Myanmar". Cretaceous Research. in press. doi:10.1016/j.cretres.2018.12.010.
  122. ^ Cyrille Prestianni; Robert W. Gess (2019). "Rinistachya hilleri gen. et sp. nov. (Sphenophyllales), from the upper Devonian of South Africa". Organisms Diversity & Evolution. 19 (1): 1–11. doi:10.1007/s13127-018-0385-3.
  123. ^ Chunxiang Li; Robbin C. Moran; Junye Ma; Bo Wang; Jiasheng Hao; Qun Yang (2019). "A mid-Cretaceous tree fern of Thyrsopteridaceae (Cyatheales) preserved in Myanmar amber". Cretaceous Research. in press. doi:10.1016/j.cretres.2019.01.002.
  124. ^ Xiao-Yuan He; Shi-Jun Wang (2019). "A new anatomically preserved osmundalean stem Tiania resinus sp. nov. from the Lopingian (upper Permian) of eastern Yunnan, China". Review of Palaeobotany and Palynology. 262: 52–59. doi:10.1016/j.revpalbo.2018.12.004.
  125. ^ Petr Kraft; Josef Pšenička; Jakub Sakala; Jiří Frýda (2019). "Initial plant diversification and dispersal event in upper Silurian of the Prague Basin". Palaeogeography, Palaeoclimatology, Palaeoecology. 514: 144–155. doi:10.1016/j.palaeo.2018.09.034.
  126. ^ Koorosh Rashidi; Felix Schlagintweit (2019). "Uteria naghanensis n. sp. (Dasycladale) from the Upper Maastrichtian of Iran". Carnets de Géologie. 19 (2): 21–33. doi:10.4267/2042/69755.