From Wikipedia, the free encyclopedia
Jump to: navigation, search
IUPAC name
(4R,4aS,7aR,12bS)-3-methyl-7-oxo-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinoline-4a,9-diyl diacetate
64643-76-1 YesY
Jmol interactive 3D Image
Molar mass 385.42 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

3,14-Diacetyloxymorphone is an opioid analgesic which has never been marketed. It is an acetyl derivative of oxymorphone. It is related to other acetylated esters, including 3,6-diacetyloxymorphone, 3,8,14-triacetyloxymorphone, 3,6,8,14-tetraacetyloxymorphone, noroxymorphone analogues of all or most of the above, and 3,6,14-triacetyloxymorphone aka 3,6,14-triacetylhydroxydihydromorphinone, a derivative of oxymorphone whose structure-activity relationship suggests is 800 per cent the potency of the parent drug versus 250 per cent for 3,14-diacetyoxymorphone.[1] Both were developed in Austria in the 1920s along with other derivatives of the strong dihydromorphinones and these drugs are generated by reacting oxymorphone with either acetic anhydride or acetyl chloride at various temperatures in the 80-160°C for several hours; 3,6,14-triacetyloxymorphone may be more easily made when a catylst is used but elevated pressure or reaction in vacuo or under a nitrogen or noble gas atmosphere is not required. Each of the acetyl esters of oxymorphone has a hydromorphone analogue, and these were all developed around the same time (1915-1930) in Austria and Germany.

As an ester of oxymorphone, it is presumably a Schedule II controlled substance as it and its relatives save acetlmorphone do not specifically appear in Schedule I. 3,14-Diacetyloxymorphone and its relatives including acetylmorphone do not, however, have annual production quotas published by the DEA in the Federal Register.

Like all or most of the direct morphine derivatives, halogenated derivatives of these drugs and their hydromorphone and hydromorphinol analogues were synthesised in the 1930s when both the esters and the halogenated morphine derivatives were being developed, including one given as 1,2-iodo-3,6,14-triacetyl-6ɑ-14β-hydroxydihydromorphinone in a footnote to a 1948 German medical journal article about the esters of morphine. It appears that this drug was used, labelled with Iodine 129, as a tracer in animal studies, was significantly stronger than morphine, and possiby has 1- and/or 2- fluoro, chloro, and bromo analogues.

3,6-diacetyloxymorphone is a third acetylated oxymorphone derivative, the oxymorphone analogue of acetylmorphone and expected to be intermediate in strength betwixt the two aforementioned drugs. Another is 3-acetyloxymorphone. All of the above have been, owing to their somewhat sophisticated yet straightforward synthesis from pharmaceutical opioids, consistently if in vanishingly small quantities since at least the 1960s by law enforcement around the world as the results of clandestine synthesis, and acetylmorphone itself was banned by the League of Nations in 1930 to prevent its use as a legal heroin substitute. Therefore all or most of this group and its hydromorphone analogues along with some others more closely related to heroin such as acetylpropionylmorphine were the first designer drugs in the 1920s.

In Naked Lunch and elsewhere, William S. Burroughs discusses oxycodone, which is six times stronger than codeine, and opines that it should be able to develop "dihydro-oxy-heroin" on the same basis, a drug six times stronger than heroin. 3,14-diacetyloxymorphone is one candidate for actually being that drug; 3,6-diacetyloxymorphone is the other.


  1. ^ UNODC Bulletin On Narcotics, 1953-2