# 3000 (number)

(Redirected from 3433 (number))
 ← 2999 3000 3001 →
Cardinal three thousand
Ordinal 3000th
(three thousandth)
Factorization 23× 3 × 53
Roman numeral MMM
Unicode symbol(s) MMM, mmm
Binary 1011101110002
Ternary 110100103
Quaternary 2323204
Quinary 440005
Senary 215206
Octal 56708
Duodecimal 18A012
Vigesimal 7A020
Base 36 2BC36

3000 (three thousand) is the natural number following 2999 and preceding 3001. It is the smallest number requiring thirteen letters in English (when "and" is required from 101 forward).

## In other fields

In the novel The Brothers Karamazov by Fyodor Mikhailovich Dostoevsky, a recurring conflict between Fyodor Pavlovich and his eldest son Dmitri Fyodorovich involves the sum of 3000 roubles.

Mr. 3000 is the title of the 2004 movie starring Bernie Mac.

3000 is sometimes used (often with comical intent) to represent a year in the distant future. For example, the events of the television series Futurama take place in 3000.

The number is also used in the title of the comedy series Mystery Science Theater 3000.

The postal code for the downtown core of Melbourne, Australia.

André 3000 is one of the members of OutKast.

## References

1. "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
2. ^ "Sloane's A051624 : 12-gonal (or dodecagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
3. "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
4. ^ a b c d "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
5. ^ a b "Sloane's A005898 : Centered cube numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
6. ^ "Sloane's A082897 : Perfect totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
7. "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
8. ^ a b "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
9. "Sloane's A001844 : Centered square numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
10. ^ "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
11. ^ a b c "Sloane's A080076 : Proth primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
12. ^ a b c d "Sloane's A100827 : Highly cototient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
13. "Sloane's A005282 : Mian-Chowla sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
14. ^ a b "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
15. ^ a b "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
16. ^ "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
17. ^ a b "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
18. ^ a b c d "Sloane's A006562 : Balanced primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
19. ^ "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
20. ^ a b "Sloane's A002648 : A variant of the cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
21. ^ "Sloane's A000032 : Lucas numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
22. ^ "Sloane's A082079 : Balanced primes of order four". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
23. ^ "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
24. ^ "Sloane's A093112 : a(n) = (2^n-1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.