5α-Reductase inhibitor

From Wikipedia, the free encyclopedia
  (Redirected from 5α-reductase inhibitor)
Jump to: navigation, search
5α-Reductase inhibitor
Drug class
Dutasteride.svg
Dutasteride, one of the most widely used 5α-reductase inhibitors.
Class identifiers
Synonyms Dihydrotestosterone antagonists; Dihydrotestosterone blockers
Use Benign prostatic hyperplasia, androgenic alopecia, hirsutism, transgender women
ATC code G04CB
Biological target 5α-Reductase
Chemical class Azasteroids
In Wikidata

5α-Reductase inhibitors (5-ARIs) are a class of drugs with antiandrogen effects, used primarily in the treatment of benign prostatic hyperplasia (BPH) (enlarged prostate) and androgenic alopecia (pattern hair loss). They are also used less commonly to treat hirsutism (excessive hair growth) in women.[1]

These agents inhibit the enzyme 5α-reductase, which is involved in the metabolic transformations of a variety of endogenous steroids. 5α-reductase inhibition is most known for preventing conversion of testosterone, the major androgen sex hormone, to the more potent dihydrotestosterone (DHT), in androgen-associated disorders.

Medical use[edit]

5-ARIs are clinically used in the treatment of conditions that are exacerbated by DHT:[2]

They have also been explored in the treatment and prevention of prostate cancer. While the 5-ARI finasteride reduces the cancer risk by about a third, it also increases the fraction of aggressive forms of prostate cancer. Overall, there does not seem to be a survival benefit for prostate cancer patients under finasteride.[3]

5-ARIs can be used in the treatment of hirsutism in women.

5-ARIs are also sometimes employed as supplementary antiandrogens in hormone replacement therapy for trans women.

Side effects[edit]

In general, adverse drug reactions (ADRs) experienced with 5-ARIs are dose-dependent. Common ADRs include impotence, decreased libido, decreased ejaculate volume. Rare ADRs include breast tenderness and enlargement (gynecomastia), and allergic reaction.[2] Other symptoms such as depression, and anxiety have been claimed with the use of 5-ARIs such as finasteride,[4] however no significant difference in depression scores and loss of libido, compared to unaffected individuals, has been confirmed.[5]

The FDA has notified healthcare professionals that the Warnings and Precautions section of the labels for the 5-ARI class of drugs has been revised to include new safety information about the increased risk of being diagnosed with a more serious form of prostate cancer (high-grade prostate cancer).[6]

Finasteride is associated with intraoperative floppy iris syndrome and cataract formation.[7][8]

Pharmacology[edit]

The pharmacology of 5α-reductase inhibition is complex, but involves the binding of NADPH to the enzyme followed by the substrate. Specific substrates include testosterone, progesterone, androstenedione, epitestosterone, cortisol, aldosterone, and deoxycorticosterone. The entire physiologic effect of their reduction is unknown, but likely related to their excretion or is itself physiologic.[9] Beyond being a catalyst in the rate-limiting step in testosterone reduction, 5α-reductase isoforms I and II reduce progesterone to 5α-dihydroprogesterone (5α-DHP) and deoxycorticosterone to dihydrodeoxycorticosterone (DHDOC). In vitro and animal models suggest subsequent 3α-reduction of DHT, 5α-DHP and DHDOC lead to neurosteroid metabolites with effect on cerebral function. These neurosteroids, which include allopregnanolone, tetrahydrodeoxycorticosterone (THDOC), and 3α-androstanediol, act as potent positive allosteric modulators of GABAA receptors, and have anticonvulsant, antidepressant, anxiolytic, prosexual, and anticonvulsant effects.[10] 5α-Dihydrocortisol is present in the aqueous humor of the eye, is synthesized in the lens, and might help make the aqueous humor itself.[11] 5α-Dihydroaldosterone is a potent antinatriuretic agent, although different from aldosterone. Its formation in the kidney is enhanced by restriction of dietary salt, suggesting it may help retain sodium as follows:[12]

Substrate + NADPH + H+ → 5α-substrate + NADP+

5α-DHP is a major hormone in circulation of normal cycling and pregnant women.[13]

Inhibition of the enzyme can be classified into two categories: steroidal and nonsteroidal. The steroidal class has more inhibitors with examples including finasteride (MK-906), dutasteride (GG745), 4-MA, turosteride, MK-386, MK-434, and MK-963. Several have pursued synthesis of nonsteroidals to inhibit 5α-reductase due to the undesired side effects of steroidals. The most potent and selective inhibitors of 5α-R1 are found in this class, and include benzoquinolones, nonsteroidal aryl acids, butanoid acid derivatives, and more recognizably, polyunsaturated fatty acids (especially gamma-linolenic acid), zinc, and green tea.[9]

Inhibition of 5α-reductase results in decreased conversion of testosterone to DHT by reducing the Δ4,5 double-bond. This, in turn, results in slight elevations in testosterone and estradiol levels. Gynecomastia, sexual dysfunction, and depression, are some possible side effects of 5α-reductase inhibition.

Other enzymes compensate to a degree for the absent conversion, specifically with local expression at the skin of reductive 17β-hydroxysteroid dehydrogenase, and oxidative 3α-hydroxysteroid dehydrogenase and 3β-hydroxysteroid dehydrogenase enzymes.[14]

In BPH, DHT acts as a potent cellular androgen and promotes prostate growth; therefore, it inhibits and alleviates symptoms of BPH. In alopecia, male and female-pattern baldness is an effect of androgenic receptor activation, so reducing levels of DHT also reduces hair loss.

Examples used in medicine[edit]

Propecia (finasteride) 1 mg tablets
Avodart (dutasteride) 500 µg capsules

Finasteride (Proscar or Propecia) inhibits the function of two of the isoenzymes (type II and III), whereas dutasteride inhibits all three.[15] Finasteride potently inhibits 5α-R2 at a mean inhibitory concentration IC50 of 69 nM, but is less effective with 5α-R1 until an IC50 of 360 nM.[16] Finasteride decreases mean serum level of DHT by 71% after 6 months,[17] and was shown in vitro to inhibit 5α-R3 at a similar potency to 5α-R2 in transfected cell lines.[18] Long term side effects can occur after discontinuation of the drug.[19]

Dutasteride (Avodart) has more complete suppression of all three 5α-reductase isoenzymes. It inhibits types 1 and 2 better than finasteride, leading to it causing further reduction in DHT at 6 months than the older drug (94.7% versus 70.8%).[20] It also reduces intraprostatic DHT 97% in men with prostate cancer at 5 milligrams per day over three months.[21] A second study with 3.5 mg/d for 4 months decreased intraprostatic DHT even further by 99%.[22] It has also been shown to inhibit the 5α-R3 isoenzyme in vitro,[23] suggesting that dutasteride may be a triple 5α reductase inhibitor in vivo.[9]

Epristeride (brand names Aipuliete, Chuanliu) is marketed in China for the treatment of benign prostatic hyperplasia.

Alfatradiol (brand names Ell-Cranell Alpha, Pantostin) is a topical 5-ARI used for androgenic alopecia in men and women.[24] [25]

An extract of Serenoa repens, also known as saw palmetto extract, is a 5-ARI that is sold as an over-the-counter dietary supplement. It is also used under the brand name Permixon in Europe as a pharmaceutical drug for the treatment of benign prostatic hyperplasia.

See also[edit]

References[edit]

  1. ^ Ulrike Blume-Peytavi; David A. Whiting; Ralph M. Trüeb (26 June 2008). Hair Growth and Disorders. Springer Science & Business Media. pp. 368–370. ISBN 978-3-540-46911-7. 
  2. ^ a b Rossi S (Ed.) (2004). Australian Medicines Handbook 2004. Adelaide: Australian Medicines Handbook. ISBN 0-9578521-4-2
  3. ^ Thompson, Ian M. Jr.; Goodman, Phyllis J.; Tangen, Catherine M.; Parnes, Howard L.; Minasian, Lori M.; Godley, Paul A.; Lucia, M. Scott; Ford, Leslie G. (2013-08-15). "Long-Term Survival of Participants in the Prostate Cancer Prevention Trial". New England Journal of Medicine. 369 (7): 603–610. doi:10.1056/NEJMoa1215932. ISSN 0028-4793. PMC 4141537Freely accessible. PMID 23944298. 
  4. ^ Rahimi-Ardabili B, Pourandarjani R, Habibollahi P, Mualeki A (2006). "Finasteride induced depression: a prospective study". BMC Clinical Pharmacology. 6: 7. doi:10.1186/1472-6904-6-7. PMC 1622749Freely accessible. PMID 17026771. 
  5. ^ Singh, M. K.; Avram, M. (2014). "Persistent sexual dysfunction and depression in finasteride users for male pattern hair loss: a serious concern or red herring?". The Journal of clinical and aesthetic dermatology. 7 (12): 51–5. PMC 4285451Freely accessible. PMID 25584139. 
  6. ^ "FDA Alert: 5-alpha reductase inhibitors (5-ARIs): Label Change – Increased Risk of Prostate Cancer". Drugs.com. Retrieved 2014-06-08. 
  7. ^ Wong, A. C. M.; Mak, S. T. (2011). "Finasteride-associated cataract and intraoperative floppy-iris syndrome". Journal of Cataract & Refractive Surgery. 37 (7): 1351–1354. doi:10.1016/j.jcrs.2011.04.013. PMID 21555201. 
  8. ^ Issa, S. A.; Dagres, E. (2007). "Intraoperative floppy-iris syndrome and finasteride intake". Journal of Cataract & Refractive Surgery. 33 (12): 2142–2143. doi:10.1016/j.jcrs.2007.07.025. PMID 18053919. 
  9. ^ a b c Azzouni F, Godoy A, Li Y, Mohler J, et al. (2012). "The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases". Adv Urol. 2012: 530121. doi:10.1155/2012/530121. PMC 3253436Freely accessible. PMID 22235201. 
  10. ^ Finn, D. A.; Beadles-Bohling, A. S.; Beckley, E. H.; Ford, M. M.; Gililland, K. R.; Gorin-Meyer, R. E.; Wiren, K. M. (2006). "A New Look at the 5?-Reductase Inhibitor Finasteride". CNS Drug Reviews. 12 (1): 53–76. doi:10.1111/j.1527-3458.2006.00053.x. PMID 16834758. 
  11. ^ Weinstein BI, Kandalaft N, Ritch R, Camras CB, Morris DJ, Latif SA, Vecsei P, Vittek J, Gordon GG, Southren AL (June 1991). "5 alpha-dihydrocortisol in human aqueous humor and metabolism of cortisol by human lenses in vitro". Invest. Ophthalmol. Vis. Sci. 32 (7): 2130–5. PMID 2055703. 
  12. ^ Kenyon CJ, Brem AS, McDermott MJ, Deconti GA, Latif SA, Morris DJ (May 1983). "Antinatriuretic and kaliuretic activities of the reduced derivatives of aldosterone". Endocrinology. 112 (5): 1852–6. doi:10.1210/endo-112-5-1852. PMID 6403339. 
  13. ^ Milewich L, Gomez-Sanchez C, Crowley G, Porter JC, Madden JD, MacDonald PC (October 1977). "Progesterone and 5alpha-pregnane-3,20-dione in peripheral blood of normal young women: Daily measurements throughout the menstrual cycle". J. Clin. Endocrinol. Metab. 45 (4): 617–22. doi:10.1210/jcem-45-4-617. PMID 914969. 
  14. ^ Andersson, S. (2001). "Steroidogenic enzymes in skin". European journal of dermatology : EJD. 11 (4): 293–295. PMID 11399532. 
  15. ^ Yamana K, Labrie F, Luu-The V (January 2010). "Human type 3 5α-reductase is expressed in peripheral tissues at higher levels than types 1 and 2 and its activity is potently inhibited by finasteride and dutasteride". Hormone Molecular Biology and Clinical Investigation. 2 (3). doi:10.1515/hmbci.2010.035. 
  16. ^ Tian G (1994). "17β-(N-tert-butylcarbamoyl)-4-aza-5α-androstan-1-en-3-one is an active site-directed slow time-dependent inhibitor of human steroid 5α-reductase". Biochemistry. 33 (8): 2291–2296. doi:10.1021/bi00174a041. PMID 8117686. 
  17. ^ McConnell J. D.; Wilson J. D.; George F. W.; Geller J.; Pappas F.; Stoner E. (1992). "Finasteride, an inhibitor of 5α-reductase, suppresses prostatic dihydrotestosterone in men with benign prostatic hyperplasia". Journal of Clinical Endocrinology and Metabolism. 74 (3): 505–508. doi:10.1210/jc.74.3.505. PMID 1371291. 
  18. ^ Yamana K.; Labrie F.; Luu-The V.; et al. (2010). "Human type 3 5α- reductase is expressed in peripheral tissues at higher levels than types 1 and 2 and its activity is potently inhibited finasteride and dutasteride". Hormone Molecular Biology and Clinical Investigation. 2 (3): 293–299. doi:10.1515/hmbci.2010.035. 
  19. ^ Irwig MS, Kolukula S (June 2011). "Persistent sexual side effects of finasteride for male pattern hair loss". J Sex Med. 8 (6): 1747–53. doi:10.1111/j.1743-6109.2011.02255.x. PMID 21418145. 
  20. ^ Clark R. V.; Hermann D. J.; Cunningham G. R.; Wilson T. H.; Morrill B. B.; Hobbs S. (2004). "Marked suppression of dihydrotestosterone in men with benign prostatic hyperplasia by dutasteride, a dual 5α-reductase inhibitor". Journal of Clinical Endocrinology and Metabolism. 89 (5): 2179–2184. doi:10.1210/jc.2003-030330. PMID 15126539. 
  21. ^ G. L. Andriole, P. Humphrey, P. Ray et al., "Effect of the dual 5α-reductase inhibitor dutasteride on markers of tumor regression in prostate cancer,"
  22. ^ Gleave M.; Qian J.; Andreou C.; et al. (2006). "The effects of the dual 5α-reductase inhibitor dutasteride on localized prostate cancer—results from a 4-month pre-radical prostatectomy study". The Prostate. 66 (15): 1674–1685. doi:10.1002/pros.20499. PMID 16927304. 
  23. ^ Moss G. P. (1989). "Nomenclature of steroids (Recommendations 1989)". Pure and Applied Chemistry. 61 (10): 1783–1822. doi:10.1351/pac198961101783. 
  24. ^ Berger, Artur; Wachter, Helmut, eds. (1998). Hunnius Pharmazeutisches Wörterbuch (in German) (8th ed.). Walter de Gruyter Verlag. p. 486. ISBN 3-11-015793-4. 
  25. ^ Mutschler, Ernst; Gerd Geisslinger; Heyo K. Kroemer; Monika Schäfer-Korting (2001). Arzneimittelwirkungen (in German) (8th ed.). Stuttgart: Wissenschaftliche Verlagsgesellschaft. p. 453. ISBN 3-8047-1763-2.