5-demicube

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Demipenteract
(5-demicube)
Demipenteract graph ortho.svg
Petrie polygon projection
Type Uniform 5-polytope
Family (Dn) 5-demicube
Families (En) k21 polytope
1k2 polytope
Coxeter symbol 121
Schläfli symbol {3,32,1} = h{4,33}
s{21,1,1,1}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.png
4-faces 26 10 {31,1,1}Cross graph 4.svg
16 {3,3,3}4-simplex t0.svg
Cells 120 40 {31,0,1}3-simplex t0.svg
80 {3,3}3-simplex t0.svg
Faces 160 {3}2-simplex t0.svg
Edges 80
Vertices 16
Vertex figure 5-demicube verf.svg
rectified 5-cell
Petrie polygon Octagon
Symmetry group D5, [34,1,1] = [1+,4,33]
[24]+
Properties convex

In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a 5-hypercube (penteract) with alternated vertices truncated.

It was discovered by Thorold Gosset. Since it was the only semiregular 5-polytope (made of more than one type of regular facets), he called it a 5-ic semi-regular.

Coxeter named this polytope as 121 from its Coxeter diagram, which has branches of length 2, 1 and 1 with a ringed node on one of the short branches, CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3b.pngCDel nodeb.png. It exists in the k21 polytope family as 121 with the Gosset polytopes: 221, 321, and 421.

Cartesian coordinates[edit]

Cartesian coordinates for the vertices of a demipenteract centered at the origin and edge length 2√2 are alternate halves of the penteract:

(±1,±1,±1,±1,±1)

with an odd number of plus signs.

Projected images[edit]

Demipenteract wf.png
Perspective projection.

Images[edit]

orthographic projections
Coxeter plane B5
Graph 5-demicube t0 B5.svg
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph 5-demicube t0 D5.svg 5-demicube t0 D4.svg
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph 5-demicube t0 D3.svg 5-demicube t0 A3.svg
Dihedral symmetry [4] [4]

Related polytopes[edit]

It is a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family.

There are 23 Uniform 5-polytopes (uniform 5-polytopes) that can be constructed from the D5 symmetry of the demipenteract, 8 of which are unique to this family, and 15 are shared within the penteractic family.

5-demicube t0 D5.svg
h{4,3,3,3}
5-demicube t01 D5.svg
h2{4,3,3,3}
5-demicube t02 D5.svg
h3{4,3,3,3}
5-demicube t03 D5.svg
h4{4,3,3,3}
5-demicube t012 D5.svg
h2,3{4,3,3,3}
5-demicube t013 D5.svg
h2,4{4,3,3,3}
5-demicube t023 D5.svg
h3,4{4,3,3,3}
5-demicube t0123 D5.svg
h2,3,4{4,3,3,3}

The 5-demicube is third in a dimensional series of semiregular polytopes. Each progressive uniform polytope is constructed vertex figure of the previous polytope. Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes (5-cells and 16-cells in the case of the rectified 5-cell). In Coxeter's notation the 5-demicube is given the symbol 121.

k21 figures in n dimensional
Space Finite Euclidean Hyperbolic
En 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1 E4=A4 E5=D5 E6 E7 E8 E9 = {\tilde{E}}_{8} = E8+ E10 = {\bar{T}}_8 = E8++
Coxeter
diagram
CDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
Symmetry [3−1,2,1] [30,2,1] [31,2,1] [32,2,1] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 192 51,840 2,903,040 696,729,600
Graph Triangular prism.png 4-simplex t1.svg Demipenteract graph ortho.svg E6 graph.svg E7 graph.svg E8 graph.svg - -
Name −121 021 121 221 321 421 521 621
1k2 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1 E4=A4 E5=D5 E6 E7 E8 E9 = {\tilde{E}}_{8} = E8+ E10 = {\bar{T}}_8 = E8++
Coxeter
diagram
CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01l.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry
(order)
[3−1,2,1] [30,2,1] [31,2,1] [[32,2,1]] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 192 103,680 2,903,040 696,729,600
Graph Trigonal hosohedron.png 4-simplex t0.svg Demipenteract graph ortho.svg Up 1 22 t0 E6.svg Up2 1 32 t0 E7.svg Gosset 1 42 polytope petrie.svg - -
Name 1-1,2 102 112 122 132 142 152 162

References[edit]

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Richard Klitzing, 5D uniform polytopes (polytera), x3o3o *b3o3o - hin

External links[edit]