9-j symbol

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In physics, Wigner's 9-j symbols were introduced by Eugene Paul Wigner in 1937. They are related to recoupling coefficients in quantum mechanics involving four angular momenta

Recoupling of four angular momentum vectors[edit]

Coupling of two angular momenta and is the construction of simultaneous eigenfunctions of and , where , as explained in the article on Clebsch–Gordan coefficients.

Coupling of three angular momenta can be done in several ways, as explained in the article on Racah W-coefficients. Using the notation and techniques of that article, total angular momentum states that arise from coupling the angular momentum vectors , , , and may be written as

Alternatively, one may first couple and to and and to , before coupling and to :

Both sets of functions provide a complete, orthonormal basis for the space with dimension spanned by

Hence, the transformation between the two sets is unitary and the matrix elements of the transformation are given by the scalar products of the functions. As in the case of the Racah W-coefficients the matrix elements are independent of the total angular momentum projection quantum number ():

Symmetry relations[edit]

A 9-j symbol is invariant under reflection in either diagonal:

The permutation of any two rows or any two columns yields a phase factor , where

For example:

Reduction to 6j symbols[edit]

The 9-j symbols can be calculated as sums over triple-products of 6-j symbols where the summation extends over all x admitted by the triangle conditions in the factors:

.

Special case[edit]

When the 9-j symbol is proportional to a 6-j symbol:

Orthogonality relation[edit]

The 9-j symbols satisfy this orthogonality relation:

The symbol is equal to one if the triad satisfies the triangular conditions and zero otherwise.

3n-j symbols[edit]

The 6-j symbol is the first representative, n = 2, of 3n-j symbols that are defined as sums of products of n of Wigner's 3-jm coefficients. The sums are over all combinations of m that the 3n-j coefficients admit, i.e., which lead to non-vanishing contributions.

If each 3-jm factor is represented by a vertex and each j by an edge, these 3n-j symbols can be mapped on certain 3-regular graphs with 3n vertices and 2n nodes. The 6-j symbol is associated with the K4 graph on 4 vertices, the 9-j symbol with the utility graph on 6 vertices (K3,3), and the two distinct (non-isomorphic) 12-j symbols with the Q3 and Wagner graphs on 8 vertices. Symmetry relations are generally representative of the automorphism group of these graphs.

See also[edit]

References[edit]

External links[edit]