Jump to content

Lusin's theorem

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 2401:1740:c01::4 (talk) at 23:35, 1 January 2023 (General form). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In the mathematical field of real analysis, Lusin's theorem (or Luzin's theorem, named for Nikolai Luzin) or Lusin's criterion states that an almost-everywhere finite function is measurable if and only if it is a continuous function on nearly all its domain. In the informal formulation of J. E. Littlewood, "every measurable function is nearly continuous".

Classical statement

For an interval [ab], let

be a measurable function. Then, for every ε > 0, there exists a compact E ⊆ [ab] such that f restricted to E is continuous and

Note that E inherits the subspace topology from [ab]; continuity of f restricted to E is defined using this topology.

Also for any function f, defined on the interval [a, b] and almost-everywhere finite, if for any ε > 0 there is a function ϕ, continuous on [a, b], such that the measure of the set

is less than ε, then f is measurable.[1]

General form

Let be a Radon measure space and Y be a second-countable topological space equipped with a Borel algebra, and let be a measurable function. Given , for every of finite measure there is a closed set with such that restricted to is continuous.

On the proof

The proof of Lusin's theorem can be found in many classical books. Intuitively, one expects it as a consequence of Egorov's theorem and density of smooth functions. Egorov's theorem states that pointwise convergence is nearly uniform, and uniform convergence preserves continuity.

References

Sources

  • N. Lusin. Sur les propriétés des fonctions mesurables, Comptes rendus de l'Académie des Sciences de Paris 154 (1912), 1688–1690.
  • G. Folland. Real Analysis: Modern Techniques and Their Applications, 2nd ed. Chapter 7
  • W. Zygmunt. Scorza-Dragoni property (in Polish), UMCS, Lublin, 1990
  • M. B. Feldman, "A Proof of Lusin's Theorem", American Math. Monthly, 88 (1981), 191-2
  • Lawrence C. Evans, Ronald F. Gariepy, "Measure Theory and fine properties of functions", CRC Press Taylor & Francis Group, Textbooks in mathematics, Theorem 1.14

Citations

  1. ^ "Luzin criterion - Encyclopedia of Mathematics".