Jump to content

Exotic affine space

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by OAbot (talk | contribs) at 21:06, 15 August 2023 (Open access bot: doi updated in citation with #oabot.). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In algebraic geometry, an exotic affine space is a complex algebraic variety that is diffeomorphic to for some n, but is not isomorphic as an algebraic variety to .[1][2][3] An example of an exotic is the Koras–Russell cubic threefold,[4] which is the subset of defined by the polynomial equation

References

[edit]
  1. ^ Snow, Dennis (2004), "The role of exotic affine spaces in the classification of homogeneous affine varieties", Algebraic Transformation Groups and Algebraic Varieties: Proceedings of the Conference Interesting Algebraic Varieties Arising in Algebraic Transformation Group Theory Held at the Erwin Schrödinger Institute, Vienna, October 22-26, 2001, Encyclopaedia of Mathematical Sciences, vol. 132, Berlin: Springer, pp. 169–175, CiteSeerX 10.1.1.140.6908, doi:10.1007/978-3-662-05652-3_9, ISBN 978-3-642-05875-2, MR 2090674.
  2. ^ Freudenburg, G.; Russell, P. (2005), "Open problems in affine algebraic geometry", Affine algebraic geometry, Contemporary Mathematics, vol. 369, Providence, RI: American Mathematical Society, pp. 1–30, doi:10.1090/conm/369/06801, ISBN 9780821834763, MR 2126651.
  3. ^ Zaidenberg, Mikhail (2000). "On exotic algebraic structures on affine spaces". St. Petersburg Mathematical Journal. 11 (5): 703–760. arXiv:alg-geom/9506005. Bibcode:1995alg.geom..6005Z.
  4. ^ Makar-Limanov, L. (1996), "On the hypersurface in or a -like threefold which is not ", Israel Journal of Mathematics, 96 (2): 419–429, doi:10.1007/BF02937314