Jump to content

Formally étale morphism

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 31.33.164.250 (talk) at 15:37, 26 November 2019. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In commutative algebra and algebraic geometry, a morphism is called formally étale if it has a lifting property that is analogous to being a local diffeomorphism.

Formally étale homomorphisms of rings

Let A be a topological ring, and let B be a topological A-algebra. Then B is formally étale if for all discrete A-algebras C, all nilpotent ideals J of C, and all continuous A-homomorphisms u : BC/J, there exists a unique continuous A-algebra map v : BC such that u = pv, where p : CC/J is the canonical projection.[1]

Formally étale is equivalent to formally smooth plus formally unramified.[2]

Formally étale morphisms of schemes

Since the structure sheaf of a scheme naturally carries only the discrete topology, the notion of formally étale for schemes is analogous to formally étale for the discrete topology for rings. That is, a morphism of schemes f : XY is formally étale if for every affine Y-scheme Z, every nilpotent sheaf of ideals J on Z with i : Z0Z be the closed immersion determined by J, and every Y-morphism g : Z0X, there exists a unique Y-morphism s : ZX such that g = si.[3]

It is equivalent to let Z be any Y-scheme and let J be a locally nilpotent sheaf of ideals on Z.[4]

Properties

  • Open immersions are formally étale.[5]
  • The property of being formally étale is preserved under composites, base change, and fibered products.[6]
  • If f : XY and g : YZ are morphisms of schemes, g is formally unramified, and gf is formally étale, then f is formally étale. In particular, if g is formally étale, then f is formally étale if and only if gf is.[7]
  • The property of being formally étale is local on the source and target.[8]
  • The property of being formally étale can be checked on stalks. One can show that a morphism of rings f : AB is formally étale if and only if for every prime Q of B, the induced map ABQ is formally étale.[9] Consequently, f is formally étale if and only if for every prime Q of B, the map APBQ is formally étale, where P = f−1(Q).

Examples

See also

Notes

  1. ^ EGA 0IV, Définition 19.10.2.
  2. ^ EGA 0IV, Définition 19.10.2.
  3. ^ EGA IV4, Définition 17.1.1.
  4. ^ EGA IV4, Remarques 17.1.2 (iv).
  5. ^ EGA IV4, proposition 17.1.3 (i).
  6. ^ EGA IV4, proposition 17.1.3 (ii)–(iv).
  7. ^ EGA IV4, proposition 17.1.4 and corollaire 17.1.5.
  8. ^ EGA IV4, proposition 17.1.6.
  9. ^ mathoverflow.net question
  10. ^ Ford (2017, Corollary 4.7.3)

References

  • Ford, Timothy J. (2017), Separable algebras, Providence, RI: American Mathematical Society, ISBN 978-1-4704-3770-1, MR 3618889
  • Grothendieck, Alexandre; Dieudonné, Jean (1964). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Première partie". Publications Mathématiques de l'IHÉS. 20. doi:10.1007/bf02684747. MR 0173675.
  • Grothendieck, Alexandre; Dieudonné, Jean (1967). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie". Publications Mathématiques de l'IHÉS. 32. doi:10.1007/bf02732123. MR 0238860.