Jump to content

Signature defect

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Citation bot (talk | contribs) at 01:52, 4 December 2019 (Alter: journal. Add: jstor. Removed URL that duplicated unique identifier. | You can use this bot yourself. Report bugs here.| Activated by User:Nemo bis | via #UCB_webform). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, the signature defect of a singularity measures the correction that a singularity contributes to the signature theorem. Hirzebruch (1973) introduced the signature defect for the cusp singularities of Hilbert modular surfaces. Michael Francis Atiyah, H. Donnelly, and I. M. Singer (1983) defined the signature defect of the boundary of a manifold as the eta invariant, the value as s = 0 of their eta function, and used this to show that Hirzebruch's signature defect of a cusp of a Hilbert modular surface can be expressed in terms of the value at s = 0 or 1 of a Shimizu L-function.

References

  • Atiyah, Michael Francis; Donnelly, H.; Singer, I. M. (1983), "Eta invariants, signature defects of cusps, and values of L-functions", Annals of Mathematics, Second Series, 118 (1): 131–177, doi:10.2307/2006957, ISSN 0003-486X, JSTOR 2006957, MR 0707164
  • Hirzebruch, Friedrich E. P. (1973), "Hilbert modular surfaces", L'Enseignement Mathématique. Revue Internationale. IIE Série, 19: 183–281, doi:10.5169/seals-46292, ISSN 0013-8584, MR 0393045